Neutron Measurements of the Fuel Remaining in the TMI II OTSG's

B. D. Geelhood
K. H. Abel

January 1989

Prepared for the U.S. Department of Energy under Contract DE:AC06*76RLO 1830

Pacific Northwest Laboratory
Operated for the U.S. Department of Energy by Battelle Memorial Institute

DISCLAIAEP

This report was prepared as an account of work spansored by an agency of the United States Covernment. Neither the United States Corvernment nor any agency thereof, nor Battelle Memorial institute, nor any or their empleyees, makes any warranty, expressed or implied, or assumes any legal líability or tesponsibility for the accuracy, completeness, or usefulnessof any information, apparatus, product, or precess disclosed, or represents that its use would not infinge privately owned nghts, सeference herein toany specitic commercial product, process, or service by trade name, trademark, manuiacturer, or otherwise does not necessarily constitute or imply its endarsement, recommendation, or favoring by the United \$tates Gevernment or any agency thereof, or Battelle Memorial Institute. The views and opinsons of authors expressed herein do net necessarily state or reffect those of the United Stakes Covernment or any agency therea.

PACIFIC NORTHWEST IABORATORY eperated by
battelle memorial instifute for the
UNITED STATES DEPARTMENT OF ENERGY under Contract AE-ACDA-76RLO 183

Finsed in the United Siafes of America Availalwle from	
Niffrice Cocodes	
Microficke Aly	
Frised Copy	
	Price
Fages	Comes
	A.02
02605	A03
	Ats
(730]	Ans
?01.725	A)
126.150	A) 7
153.175	A0s
178.20	A ${ }^{\text {\% }}$
$301-223$	¢ 10
226.258	Al1
23:275	212
	お)

NEUTRON MEASUREMENTS OF THE

FUEL REMAINING IN THE TMI II OTSG'S
B. D. Geelhood
K. H. Abel

February 1989

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO I830

Pacific Northwest Laboratory Richland, Washington 99352

EXECUTIVE SUMMARY

MEASUREMENTS MADE

Polypropylene tubes containing a string of 18 copper rods were inserted into the lower head region and each J-leg of the two once-through steam generators (OTSG) of the unit two reactor at Three Mile Island. The object was to measure the neutron flux present in those regions and estimate the amount of residual fuel remaining in each OTSG. The neutron flux from any residual fuel Induces a radioisotope, ${ }^{64} \mathrm{Cu}$, in the copper coupons. The ${ }^{64} \mathrm{Cu}$ activity is detected by coincidence counting the two $511-\mathrm{keV}$ gamma rays produced by the annihilation of the positron emitted in the decay of ${ }^{64} \mathrm{Cu}$. The copper coupons were placed between two 6 -inch diameter, 6 -inch long $\mathrm{NaI}(\mathrm{Tl})$ crystals and the electronics produced a coincidence count whenever the two gaman rays were uniquely detected. The net coincidence count is proportional to the amount of ${ }^{64} \mathrm{Cu}$ activity in the coupon.

CALCULATIONS MADE

The coincidence count data were reduced to estimates of the neutron flux in the various regions of the OTSGs. The flux estimates from several measurements were combined statistically to produce estimates of the flux in each OTSG region. These estimates are listed in Table 1. The table contains weighted average values in the column headed "Wtd Ave FLUX" for each area (Jleg or bowl) of the OTSG. In some OTSG areas, the neutron flux was below the limit of detection and no significant non-zero flux estimate was possible. The column labeled "FLUX LTV" contains a less-than-value where the mean of the neutron flux has a 95% chance of being below that value and only a 5% chance of being above it. The "LTV" is 1.645-sigma above either the mean flux or the minimum detectable flux. The neutron flux in the $1 B / J-l e g$ and both A and B bowls was below the minimum detectable level.

The neutron flux value is a fundamental and direct intermediate result of the ${ }^{84} \mathrm{Cu}$ measurements. It is also relatively independent of the debris environment model at the bottom of the OTSGs. The relatively low measured flux value indicates a low danger of criticality.

A reasonable model of the debris configuration and other physics-based considerations was used to estimate the amount of residual fuel remaining in each OTSG. Several models were considered, which gave reasonably consistent estimates of the amount of fuel. Fuel estimates fron two such models are also listed in Table 1. One model listed estimated the residual fuel required to produce the ${ }^{64} \mathrm{Cu}$ based on the ratio of neutron capture in the copper coupons compared to the other major neutron capturing materials in the OTSG. The
other model estimated the fuel based on experimental data from a mockup. Both schemes produce reasonable estimates of the total fuel present without requiring fuel distribution details that are not available.

TABLE 1. Summary of OTSG Neutron Flux Measurements with Fuel Estimates Based on 1) the Neutron Capture Model Using the Flux Removal Cross Sections and 2) Experimental Mockup Data Using ${ }^{3}$ He Sensor Data (increased to cover systematic error estimates)

LOCATION	Wtd Ave PLUX $\mathrm{n} / \mathrm{sec} / \mathrm{cm}^{\mathrm{a}}$	FLUX LTy $\mathrm{n} / \mathrm{sec} / \mathrm{cm}^{2}$	DEBRIS AREA Cl^{2}	Capture model Removal σ		Experimental (corrected)	
				FUEL	FUEL	FUEL	FUEL
				EST	LTY	EST	LTY
				kg	kg	kg	kg
1A/d-leg	0.016(3)	0.020	1.1E4	3,61	4.51	3.43	4.3
2A/J-leg	0.009(3)	0.014	1.154	2.03	3.16	1.93	3.0
A/BOWL	----	0.006	2.5E4	-	3.08	----	2.9
A sum				5.64	10.75	5,36	10.2
1B/3-1eg	----	0.005	1.154	----	1.13	--	1.1
2B/J-leg	0.024(3)	0.030	1.154	5.42	6.77	5.14	6.4
B/BOWL		0.004	2.5E4	--	$\underline{2.05}$	---	1.9
B sum				5.42	9.95	5.14	9.4

Details of these models and some of the other agreeing modeling work can be found in the body of the report. These neutron flux estimates agree with estimates based on debris volume (video evidence) and the gamma-ray measurements. In spite of modeling uncertainties; these estimates could not underestimate reality by more than a factor of two. In fact, the LTYs in the table may be considered reasonable upper limits without an additional multiplicative factor.

CONCLUSIONS

The PNL equipment was well suited to the neutron flux measurement task and worked well the entire time. The neutron flux measurements indicate the smount of residual fuel in the OTSGs is less than 10 kg each.

CONTENTS

EXECUTIVE SUMMARY iii
1.0 COINCIDENCE MEASUREMENT SYSTEM 1.1
2.0 METHOD OF NEUTRON FLUX DETERMINATION 2.1
3.0 STATISTICAL CONSIDERATIONS 3.1
4.0 BACKGROUND MEASUREMENTS 4.1
5.0 COPPER ACTIVATION MEASUREMENTS 5.1
6.0 FUEL AMOUNT ESTIMATES 6.1

EIGURES

1.1. Schematic of Sensor and Electronics 1.3
2.1. Decay Schemes of ${ }^{64} \mathrm{Cu}$ and ${ }^{22} \mathrm{Na}$, 2.7
6.1. Geometry for Capture Model . 6.13

TABLES

1. Summary of OTSG Neutron Flux Measurements with Fuel Estimates iv
2.1. Calculated ${ }^{64} \mathrm{Cu}$ and ${ }^{22} \mathrm{Na}$ Efficiencies 2.9
2.2. Packard-5 Count Data for Rods Activated in Cave 2.10
2.3. Neutron Flux Estimates Based on Packard-5 Measurements. 2.11
2.4. Data from Sensors Used at GPU 2.11
2.5. Relative Efficiencies at the Rod Positions. 2.13
3.1. Possible Outcomes for Rolling Two Dice. 3.6
3.2. Possible Means of Getting 18 Extra Counts in Two Measurements Each with a Background Mean of 25 Counts 3.7
3.3. Multinomial Coefficients. 3.9
3.4. Minimum Detectable Neutron Fluxes 3.16
4.1. Background Rates for OTSG-A Measurements. 4.3
4.2. Backgrwund Rates for OTSG-B Measurements. 4.4
5.1. J-String Measurements in the J-leg, A-OTSG/RCP-2A 5.5
5.2. E-String Measurements in the J-1eg, $A-$ OTSG/RCP-1A 5.7
5.3. H-String Weasurements in the Bowl of A-OTSG 5.9
5.4. G-String Measurements in the Bowl of A-OTSG 5.10
5.5. F-String Measurements in the J-leg, B-OTSG/RCP-2B 5.11
5.6. I-String Measurements in the J-leg, B-OTSG/RCP-1B 5.13
5.7. C-String Measurements in Bowl of B-OTSG 5.14
5.8. Summary for OTSG Measurements 5.17
6.1. Number Density of Various Materials in OTSG 6.4
6.2. Neutron Cross Section and Mean Free Path Data 6.66.3. Summary of OTSG Neutron Flux Measurements with Fuel Estimateslising Both the Simplest Flux Based Model and the Debris VolumeEstimates * * . . . 6.9
6.4. Fission Spectra Removal Cross Section Data. 6. 12
6.5. Summary of OTSG Neutron Flux Measurements with Fuel Estimates Using the Neutron Capture Model with Two Parameter Selections . . . 6.16
6.6. ${ }^{3} \mathrm{He}$ Sensor to Source Data 6.18
6.7. Results of PNL. Copper Coupon Activation with 6.5E6 nis Source . . . 6.20
6.B. Flux Conversion of PNL Copper Coupon Data 6.22
6.9. Flux Conversion of PNL ${ }^{3}$ He Sensor Data. * . . . * . . 6.23
6.10. Summary of OTSG Neutron Flux Neasurements with Fuel Estimates from the Mockup Experimental Data 6.24

1.0 COINCIDENCE MEASUREMENT SYSTEM

1.1 INTRODUCTION

This chapter describes the experimental equipment used to determine ${ }^{64} \mathrm{Cu}$ activity in the neutron-activated copper coupons. The techniques used for initial setup of the counting system and for quality control of data are also explained. Modifications to the equipment or procedures which might yield slightly improved results in future measurements are also discussed.

1.2 COPPER COUPONS

Natural copper was placed in each area of the OTSGs in the form of 18 individual coupons. These copper coupons were $1 / 4$-inch diameter rods, 4 inches long, with the ends machined to a convex surface to allow the string to bend slightly. Each coupon weighed 28.60 grams and was labeled with an alphabetic character identifying the string followed by a sequence number (1 to 18). Each coupon was individually weighed on a Mettler PC4400 scale and none deviated from the average by more than 0.05 g . This 0.2% maximum error in the weight is insignificant to the measurement task.

Eighteen copper coupons, supplied by Pacific Northwest Laboratory ${ }^{(a)}$, were placed in a $1 / 2$-inch diameter polypropylene tube for emplacement in the bottom of the OTSG by insertion from the manway at the top of the OTSG down through a steam tube. The front or leading end of the polypropylene tube was sealed and a bullet-shaped plug inserted. The coupons were loaded sequentially in the polypropylene tube with coupon \#1 at the bullet end (front) of the string and coupon \#18 at the rear of the string. The 18 copper coupons were preceded and followed in the string by saall $G M$ counters to measure the local gamma-ray dose as the string was inserted. Additional copper rods were used as ballast behind the rear $G M$ counter to insure that the string would not float up from the bottom surface of the OTSG bowl or J-leg. The tubes remained watertight for all the OTSG measurements and the coupons were not contaminated by OTSG water.

1.3 SENSORS AND ELECTRONICS

The copper coupons were placed in a plexiglass holder that was a halfinch thick between two 6 -inch diameter, 6 -inch long NaI(Tl) crystals. The holder had seven holes drilled on half-inch centers to hold the coupons upright and centered vertically on the crystal face. The holder was made of

[^0]low z material to minimize attenuation of $511-\mathrm{keV}$ gamma rays by the holder. The half-inch thickness and hole spacing were chosen to allow coupon placement and retrieval between the crystals.

Each $\mathrm{NaI}(T 1)$ crystal was fiewed with a 5 -inch diameter photomultiplier tube [PMT]. No preamplifier was used since the cable to the main amplifier was relatively short. Since PMT gain is electronically cleaner than preamplifier gain, the PMTs were biased relatively high at 1200 volts. The two PMTs of a sensor system shared a common high voltage power supply since the adjustment required to match the gains could be made at the amplifiers.

The NaI(Tl) crystals and attached PMTs were mounted in plexiglass cradles to maintain a fixed horizontal position. The horizontal position was chosen to reduce the probability of cosmic rays interacting in both crystals. The crystals were also enclosed in a 4 -inch thick lead cave to reduce the coincidence background from cosmic rays and surrounding natural radioactivity. A few of the lead bricks at the top of the cave over the coupon holder were temporarily removed to insert the copper coupons. The position of the cave in the basement of a concrete turbine building also contributed additional cosaic ray shielding, During initial setup of the counting system on site at TMI, the $\mathrm{NaI}(\mathrm{Tl})$ crystals were carefully washed with alcohol to remove possible radioactive contamination that might contribute to the coincidence background. The FMT bases were also carefully washed with alcohol to minimize or elininate electronic noise from dirty connections.

Figure 1,1 is a schematic diagram of the sensor electronics used to make the coincidence measurements. One portion of the electronics was used to make the ${ }^{64} \mathrm{Cu}$ measurements. The other portion was used in the setup and quality assurance measurements to insure proper performance of the sensors during the measurements.

FIGURE 1.1. Schematic of Sensor and Electronics

The signal cable from each Port base was brought out through a crack in the lead cave wall to the input of an Ortec 451 spectroscopy amplifier. The gain settings were typically 500 coarse and 11.00 fine. The shaping time constant was 1 microsecond. The base line restore (BLR) was set to automatic. The delay option was out. The signal input was negatize for the "A" pair and positive for the " $B^{" 1}$ pair since the bases of the PMTs were wired differently. The signals were checked on an oscilloscope during setup to insure correct polarity and that the pulse shape was as expected. They were checked occasionally during the 3 -week measurement period to insure continued proper performance. The gain of each anplifier was set to place the $511-\mathrm{keV}$ photopeak from ${ }^{22} \mathrm{Na}$ in channel 159 of the sultichannel analyzer (MCA).

The unipolar output of the asplifier was connected to the input of the Ortec 550 single-channel analyzer (SCA). The SCAs were operated in window sode with the lower level threshold nominally set to 1.25 and the window nominally set to 5.25 . The SCA output was a logic pulse whenever the analog input pulse amplitude was within the window settings (the region of the 511keV photopeak). The threshold and window settings were made and periodically rechecked using the electronics (Logic shaper \& delay, delayed amplifier, and multichannel analyzer) shown in the lower part of Figure 1.1 as Quality Assurance Electronics. The settings for the SCA were used to select a region of data collection on the MCA by requiring coincidence between the SCA output and the delayed amplifier pulse for MCA storage. The SCA window selected completely enclosed the $511-\mathrm{keV}$ photopeak. The SCA window was slightly larger than the photopeak to insure that measurement the system would not be sensitive to slight gain shifts. If the SCA window were narrower, the background coincidence rate would be slightly (possibly 10\%) less, but a slight gain shift would have greatly changed sensor efficiency, Given the one-tiae nature of the measurement and the personnel dose, additional assurance of proper operation was felt more preferable than slightly lower background rates and凹inimum detectable levels.

The iront output from each SCA \{sensor \#1 and \$2) was connected to the positive input of an Ortec 772 counter with a 50 ohm terminator. The terminator removed possible ringing that wight have led to double counting. The threshold for the positive input was adjusted to about half the typical height of the logic pulse. This was done on an extender cable monitoring both the logic pulse and the threshold level at the input to the comparator circuit. If the threshold is near the average logic pulse amplitude, counts could be lost due to a slight reduction in the logic pulse amplitude. Conversely, if the threshold is too low, the counter is susceptible to counting either ringing or electronic noise. The count of each individual SCA output is used to ensure that chance coincidence does not significantly contribute to the coincidence count. It also serves as a quality control check that the crystals and electronics are functioning properly. The photopeak counts for the two sensors should be approximately equal. The individual photopeak counts were dominated by cosmic-ray and other natural radioactivity rather than the ${ }^{64} \mathrm{Cu}$ positron, so a constant value of the individual counts ensured that the background rates had not significantly changed during a measurement.

The rear output from each SCA (sensor \#1 and \#2) was connected to a PNL built delay and coincidence circuit. The logic pulse from both sensors (\#1 and \#2) was delayed by an adjustable amount. The delay settings were adjusted for time overlap while monitoring the delayed SCA pulses from a relatively hot ${ }^{22} \mathrm{Na}$ source on an oscilloscope. The delayed pulses were made 1 microsecond wide by the delaying circuit (one-shot pair). Thus the coincidence time gate was $1 \mathrm{\mu s}$. The coincidence logic pulse was the output of an AND gate with the delayed and shaped SCA pulses as input.

The coincidence window of 1 us was short enough to make the chance rate small compared to the coincidence count. The chance rate is the rate two physically unrelated events occur within a short time window and therefore appear to be related. The chance rate is given by

```
ChanceRate = 2 * [Rate #1] * [Rate #2] * CoincidenceTime
```

The factor " 2 " is included since either pulse could be first. Typical background individual rates at TMI were about 50 cpm so the chance coincidence rate from background was about $8.3 \mathrm{E}-5 \mathrm{cpa}$, which is very small compared to the 0.55 cpa background coincidence rate. With the hot GPU ${ }^{22} \mathrm{Na}$ source, the typical individual rates were 80 K cpm for a chance rate of 213 cpm , which is small compared to the measured 31 K cpm coincidence rate. The 1 us time was also large compared to the time jitter of the photopeak pulses out of the SCA. It was clear while adjusting the delays that coincidence events were not being missed due to slight changes in time of pulse arrival.

The logic pulse out of the coincidence box was connected with a 50 -ohm terminator to the positive input of an Ortec 772 counter. The threshold was carefully adjusted as described above for the counter on the individual SCAs. All the counters were controlled by a single Ortec timer.

The quality control electronics were connected to only one amplifier and SCA at a time. The delay amplifier provided a fixed time delay for the analog pulse from the amplifier. This allowed time for the SCA pulse to reach the coincidence input of the MCA slightly before the analog pulse as required for proper coincidence mode MCA operation. The logic shaper and delay stretched the logic pulse to satisfy the MCA requirements and allowed an adjustable delay for correct arrival time of the coincidence pulse relative to the fixed delay of the analog pulse.

1.4 QUALITY ASSURANCE EFFORTS

Periodically during the three weeks of measurements at TMI, the GPU ${ }^{22} \mathrm{Na}$ source [5.49E5 dpa on $9 / 11 / 8 \mathrm{~B}$] was counted in each of the two sensor pairs. The mean coincidence count rate was plotted and compared to the previously established value. It was constant within acceptable deviations for the entire measurement period. If the coincidence rate had shifted, it could imply that the gain may have shifted, requiring either amplifier gain or SCA threshold adjustment.

Also the coincidence rate with the weaker PNL ${ }^{22} \mathrm{Na}$ source $[3.47 \mathrm{E} 3 \mathrm{dpm}$ on 8/18/88] was measured periodically. The count rates from the weaker PNL source were closer to that expected from the ${ }^{64} \mathrm{Cu}$ coupons. Sometimes nuclear counting systems experience different difficulties at various counting rates. If the system developed a gain shift at high count rate, constant values at high count rates may not insure proper operation at the lower rates of the OTSG aeasurements. The coincidence counts were constant within acceptable deviations for the entire measurement period,

Background count rates were measured daily to insure the background remained reasonably constant as well. The daily background measurements were statistically combined to provide a system background estimate, thus minimiza ing the error in the net count for each ${ }^{64} \mathrm{cu}$ measurement. The combination of the two sources and background exercised the system at counting rates ranging from very low to high.

As time permitted, coincidence spectra of the ${ }^{22} \mathrm{Na}$ source were acquired for each of the four crystals. The $511-\mathrm{kel}$ photopeak channel was monitored and the amplifier gains were slightly adjusted if necessary to hold the photopeak in the originally gelected channel (159). The width of the SCA window was also monitored and held constant.

Initially the two older amplifiers experienced some gain shifting. These were replaced after initial setup and before any copper coupon measurements were made. The two newer amplifiers had been in use with the ${ }^{3}$ He sensors at PNL. After they were placed into the counting system the gain shift problem was better. Additionally, a cooling fan was placed in the electronics cabinet and the cabinet top removed to avoid gain drift due to heat buildup in the electronics.

The individual 511-keV photopeak count out of the ${ }^{\#} 2$ amplifier of the B system was consistently twice as high as the counts out of the other three amplifiers when the caves were empty. This was traced to afterpulses following large cosmic-ray events landing in the $511-\mathrm{keV}$ region. Since 1) this high individual rate did not affect the coincidence count rate and 2) the rate of these afterpulses was unlikely to change during the measurement period, the high individual rate was accepted. Also on this amplifier the coarse gain setting remuired to place the photopeak in channel 159 was twice that of the
other three. The individual count rates held steady during the measurement period, and no problem with the ${ }^{64} \mathrm{Cu}$ measurements were encountered due to this annoyance.

One morning the temperature in the cable spreading room was higher than usual and gain shifts were noticed. In an effort to correct the electronic gain shift problem a cable between one PMT and amplifier became strained and broke contact. This was immediately replaced. The temperature returned to normal before the coupons were removed from the OTSG. No impact on the ${ }^{64} \mathrm{Cu}$ measurements occurred.

No delays in the measurements occurred due to PNL equipment problems. All ${ }^{64} \mathrm{Cu}$ measurements were of equally high quality. No malfunction occurred to compromise the data.

1.5 RECOMMENDED EQUI PMENT IMPROVEMENTS

The coincidence background rate was higher than we would have liked. The background rate establishes the minimum detectable level, so background reduction is important to ${ }^{64} \mathrm{Cu}$ activation measurements. The sensors used had to work in the field rather than just in the PNL laboratory. Also, short lead time somewhat limited our options.

The background rate for the sensors used at TMI was about 0.55 cpm and the background rate for the low-level counting system at PNL was about 0.12 cpm. Thus a decrease in the TMI background by more than a factor of 5 would not have been likely.

The background rate could be reduced for any future measurements by utilizing an active shield against cosmic-ray events. This could entail using a 1 -inch thick sheet of plastic scintillator under the NaI(Tl) crystals. The plastic scintillator could be used to provide an additional anticoincidence pulse requirement for the coincidence pulse from the positron decay. The plastic scintillator has fast response and could detect cosmic particles. A pulse from the plastic indicating a cosmic-ray event would be delayed [for slower $\mathrm{NaI}(\mathrm{Tl})$ response] and stretched to about 10 ps to block any simultaneous or near-simultaneous occurrences of SCA (511 -keV photopeak) pulse coincidences. Cosmic-rays contribute to the coincidence background by 1) directly producing positrons, 2) producing high-energy gamma rays that pair produce with subsequent positron annihilation, 3) corner clipping both crystals and depositing just the right amount of energy in each to satisfy the SCAs, and 4) producing ringing pulses that satisfy the SCAs following huge events. The problem with ringing pulses could also be eliminated by modifying the SCAs to go dead for 10 fs following a large pulse (large being defined as a pulse greater than the upper discriminator).

Another option in reducing the background rate would be to use more lead to make a thicker cave.

Instead of reducing the background, another option for reducing the MDL would have been to use more copper. This would have required placing several strings down the J-leg in the deployment and counting more coupons at one time. This option was not practical.

The source holder could have had the holes for the copper coupons slightly closer together to improve the relative efficiency for counting the extreme positions, Also nine holes in the holder would have allowed counting all the coupons at the same time. A 9-coupon count would have a MBL which is twothirds that of a 6 -coupon ceunt.

1.6 CONCLUSION

The equipment was well suited to the measurement and worked well the entire time.

2.0 METHOD OF NEUTRON FLUX DETERMINATION

2.1 INTRODUCTION

This section describes the calculations employed to determine the neutron flux at the coupon locations in the OTSGs. The neutron flux is derived from the ${ }^{64} \mathrm{Cu}$ activity measured in the copper coupons after retrieval from various locations in the OTSGs. The ${ }^{64} \mathrm{Cu}$ activity measurement was accomplished by coincidence detection [2 6 " $\times 6^{\prime \prime} \mathrm{NaI}(\mathrm{Tl})$ crystals] of the two $511-\mathrm{keV}$ gamma rays produced during the annihilation of the positron emitted during 19.3% of the radioactive decays of ${ }^{64} \mathrm{Cu}$.

2.2 NUMBER OF ${ }^{63} \mathrm{Cu}$ ATOMS IN COUPON

The number of atoms of ${ }^{63} \mathrm{Cu}$ in the 28.60 gram copper coupon at the start of the neutron activation is

$$
\mathrm{NO}(63)=\frac{(6.022045 \mathrm{E} 23 \text { atoms } / \mathrm{mole}) *(28.60 \mathrm{grams} / \text { coupon }) *\left(0.692{ }^{63} \mathrm{Cu} / \mathrm{Cu}\right)}{(20)}
$$

(63.546 grams/mole)

NO(63) $=1.875$ E23 atoms of ${ }^{63} \mathrm{Cu}$ per coupon
where we have used Avogadro's number, the coupon weight, the ${ }^{63} \mathrm{Cu}$ isotopic abundance, and the atomic weight of copper.

2.3 ACTIVATION OF ${ }^{64} \mathrm{Cu}$

During the activation, the number of atoms of ${ }^{63} \mathrm{Cu}, \mathrm{N} 63 \mathrm{~A}$, present in the coupon is reduced. The reaction rate is

$$
\frac{d}{d t} N 63 A(t)=-N 63 A(t) * \sigma * \Phi
$$

where $" \sigma$ " $=4.4 \mathrm{E}-24 \mathrm{ca}^{2}$ is the neutron capture cross section ${ }^{(a)}$ of ${ }^{83} \mathrm{Cu}$ and " Φ " ${ }_{63}$ is the neutron flux measured in neutrons/(second* $\left.\mathrm{cm}^{2}\right)$. In fact, the number of ${ }^{63} \mathrm{Cu}$ atoas does not change significantly during the activation because the $\sigma * \Phi$ product is small.

[^1]Note the approximation of assigning on effective neutron capture cross section rather than considering the product, $\sigma * *, ~ a s$ a convolution of the capture cross section as a function of neutron energy and the energy distribution of the neutron flux. The convolution process is more exact but beyond the scope of this problem: Note that only appears in the formalism as the $\sigma * Q^{Q}$ product, which would allow scaling of the resulting flux with the value of the detailed convolution. The convolution process would include neutron capture into non-thermal resonances. Proper use of the convolution process would require a reasonable model of the neutron energy spectrum in the OTSG environm ment. Lacking information on quantities of non-thermal neutron poisons in the OTSG, such a model would be more misleading than useful. Omitting capture into copper by non-thermal resonances increases the neutron flux estimate to produce the measured activity. This is a conservative approximation for the task of seting an upper limit on the amount of residual fuel.

The neutron radiative capture cross setion measured at 2200 w/sec is $\sigma=4.50(2)$ barns and the radiative capture resonance integral $1 \mathbf{y}=4.97(8)$ barnsi ${ }^{\text {a) }}$ for ${ }^{63} \mathrm{Cu}$. However, in the aqueous OTSG environment, the thermal flux dowinates. The neutron flux overestimation (ignoring resonance capture) ill be considerably less than a factor of $2: 1[(4.5+4.9 \%) / 4.5]$. When resonance capture is ignored in the fuel estimating model, wost of this error cancels out.

At the same time; the number of atoms of ${ }^{64} \mathrm{Cu}, \mathrm{N} 64 \mathrm{~A}(\mathrm{t})$, (which was initially zero at the start of the neutron activation) also changes with a reaction rate given by

$$
\frac{d}{d t} N 64 A(t)=+N 63 A(t) * a * \Phi-\lambda * N 64 A(t)
$$

where " λ " is the radioactive decay constant, which is expressed in decays per unit time: The decay constant, λ, is related to the half life, $t(1 / 2)$, of an isotope by $\lambda=\ln (2) / t(1 / 2)$. For ${ }^{B 4} \mathrm{Cu}$, with a 12.699-hour half life; the decay constant is either 5.4593E-2 decays/hour or $1.5162 \mathrm{E}-5$ decays/second depending on choice of units. The first term on the right of the above rate equation corresponds to a gain from the neutron activation of the ${ }^{63} \mathrm{Cu}$ and the second term to a loss due to radioactive decay of ${ }^{64}$ Cu. Initially the first terim dowinates. Then as the number of ${ }^{64} \mathrm{Cu}$ atoms increases, the two terms become equal. At equilibrium (after a long activation time), the number of ${ }^{64} \mathrm{Cu}$ atoas is a constant since the production rate and decay rate are equal.

[^2]These differential equations can be solved for the number of atoms at the
 $\mathrm{N} 64 \mathrm{~A}(\mathrm{t}=0)=0$ and $\mathrm{N} 63 \mathrm{~A}(\mathrm{t}=0)=\mathrm{NO}(63)$ at the start of the activation. The solutions are

$$
\begin{aligned}
& \mathrm{N} 63 \mathrm{~A}(\mathrm{t}=\mathrm{Ta})=\mathrm{N} 0(63) * \mathrm{e}^{-(0 * \Phi * \mathrm{Ta})} \\
& \mathrm{N} 64 \mathrm{~A}(\mathrm{t}=\mathrm{Ta})=\frac{\sigma * \Phi * \mathrm{~N} 0(63)}{\lambda-\sigma * \Phi} *\left[e^{-(0 * \Phi * \mathrm{Ta})}-e^{-(\lambda * \mathrm{Ta})}\right]
\end{aligned}
$$

The value of N64A can be accurately approximated (because of the very small size of $\sigma * \Phi$) by

$$
\mathrm{N} 64 \mathrm{~A}(\mathrm{t}=\mathrm{Ta})=\frac{\sigma * \Phi * \mathrm{~N} 0(63)}{\lambda} *\left[1-e^{-(\lambda * \mathrm{Ta})}\right]
$$

Now one can easily solve for the neutron flux, " Φ ", since the function is linear in \varnothing

$$
\Phi=\frac{\lambda * N 64 A(t=T a)}{o * N 0(63)} / /\left[1-e^{-(\lambda * T a)}\right]
$$

where "Ta" is the time duration of the activation. Note " ϕ " will have the same time units as λ. After measurement of the ${ }^{64} \mathrm{Cu}$ activity, $\lambda * N 64 \mathrm{~A}(\mathrm{t}=\mathrm{Ta})$, at the end of the activation period, all the parameters are known.

2.4 DECAY OF THE COPPER ACTIVITY

The ${ }^{64} \mathrm{Cu}$ activity will decay during the experimental period and must be correctly taken into account.

2.4.1 Decay Before the Start of a Counting Period

The number of ${ }^{64} \mathrm{Cu}$ atoms in the copper coupon decreases after the coupon has been removed from the neutron flux. The number of ${ }^{64} \mathrm{Cu}$ atoms at the start of a counting period, N64S, is given by

$$
N 64 S=N 64 A * e^{-(\lambda * T d)}
$$

where "N64A" is the number of atoms at the end of the activation period and " Td " is the time delay between the end of the activation period and the start of the count.

For the OTSG measurements, a delay of between one and twe hours was experienced after string removal and the start of the first ${ }^{64} \mathrm{Cu}$ measurement. The time between end of activation and start of counting was used to 1) remove the strings from the contaminated OTSG area, 2) decontaminate the string, 3) remove the coupons from the string, radiologically monitor the coupons to insure that they were contamination free, and 4) transfer them into the counting system.

2.4.2 Decay During the Countins Period

Isotopes with very long half lives can be assumed not to decay sufficiently during a relatively short counting time and thus no change will occur in the counting rate during the counting period, However; the 12.699 -hour half life of ${ }^{68} \mathrm{Cu}$ will not be short relative to some of our longer counting times, so a correction must be made for decay during the counting time. The number of counts observed can be given by

where "Tc" is the counting time, "Eff" is the sensor efficiency in counts per decay, and " $N 64 S^{\prime}$ " is the number of atoms at the start of the counting period from the previous section. The integration uses a change of variable $x=(\lambda$ * t) to yield

$$
\operatorname{Cts}=E f f * N 64 S * \int_{t=0}^{x=\lambda * T c} e^{-x} * d x=E f f * N 64 S *\left[-e^{-x} \prod_{t=0}^{\lambda * T c}\right.
$$

which becomes

$$
\operatorname{Cts}=\operatorname{Eff} * N 64 S *\left[1-e^{-(\lambda \hbar \mathrm{Tc})}\right]
$$

Thus from the value of the sensor counts, "Cts"; one can obtain the number of ${ }^{64} \mathrm{Cu}$ atoms at the start of the counting period, "N64S". As a check, consider the small Tc expansion

$$
\text { Cts }=\text { Eff } * \text { N64S } *\left[(\lambda * \mathrm{Tc})-(\lambda * \mathrm{Tc})^{*} / 2+\ldots .\right]
$$

which equals the usual [Eff* $\boldsymbol{x}^{*} \mathrm{~N}_{\mathrm{N}} 64 \mathrm{~S} * \mathrm{Tc}$] if only the first term in the series expansion is considered.

2,5 SENSOR EFGICIENCX

The previous section used the sensor efficiency, "Eff", to convert between the count rate and the decay rate. The efficiency desired is the ratio of net coincidence counts to ${ }^{4} \mathrm{Cu}$ decays. The coincidence was between detections in the 511-kef photopeak regions of the two NaIfTl) crystals used at TMI.

2.5.1 Absolute Efficiency Yalues

Several methods of obtaining the absolute efficiency will be considered.

2.5.1.1 Calculations Based on Sensor Parameters

First consider some relatively simple numerically calculated efficiency yalues based on $\mathrm{NaI}(\mathrm{Tl})$ data in the Harshaw catalog and geometry considerations: These calculations will set the scale for what can be expected as a reasonable ${ }^{54} \mathrm{Cu}$ efficiency value. For a pair of 6-inch diameter, 6-inch long Nal(Tl) crystals separated by 0.5 inches the fractional solid angle, a, for a gama ray to enter one of the crystals from a point centered between the crystals is

$$
Q=\frac{1-\cos (\theta)}{2}=0.458
$$

where $\theta=\operatorname{ArcTan}(\mathrm{D} / a)$, the crystal diameter, D, is 6 inches, and the distance between the crystals, " a " is 0.5 inches. Then the probability of one gamma ray entering either of the two crystals is 0.917 . However, one must also consider the probability that the gamma ray will interact within the $\mathrm{NaI}(\mathrm{Tl})$ crystal. The total cross section for a $511-\mathrm{keV}$ annihilation gama ray in $\mathrm{NaI}(\mathrm{Tl})$ is $0.34 \mathrm{~cm}^{-1}$ for an interaction length of $2.94 \mathrm{~cm}(1.16$ inches). The fraction of gamma rays emitted by the point source which interact in a crystal is given by the integral over angles within the fractional solid angle for entering the crystal. Each increment of angle is weighted by the probability of the gamma ray interacting in the crystal along a path in that direction. This interaction probability is $1-e^{-d / l}$ where " d " is the distance the gamma ray travels through the crystal at each angle and " L " is the interaction length.

This integral was numerically calculated for two cases 1) crystal separation of 0.5 inches (closest possible with our 0.5 -inch thick copper rod holder between the crystals) [source 0.25 inches from crystal] and 2) crystal separation of 0.75 inches (allowing for packing around crystal) [source 0.375 inches from the crystal]. The following text (using case 1) explains the calculations leading to the entries in Table 2.1. The probability for a single 511keV gamma ray entering and interacting in one $6^{\prime \prime} \times 6^{6}$ crystal is 40.8%.

The photofraction (fraction of interacting gamma rays producing a count in the photopeak) is about 80% for a $511-\mathrm{keV}$ gamma ray in a $6 " x 6^{\prime \prime}$ crystal. The probability of a pair of $511-\mathrm{keV}$ gamma rays depositing full energy in the two-crystal system is 47.7\%, which is twice the aingle-crystal fractional solid angle integral weighted by $\left[1-e^{-d / L}\right]^{2}$ times the square of the photofraction. The single-crystal solid angle is multiplied by two because there are two crystals for the first gamma ray to pass through. The second gamma ray always goes in the opposite direction from the first so an extra solid angle factor is not needed. However, both gamma rays must interact and deposit full energy to satisfy a full energy coincidence criterion.

Figure 2.1 shows the ${ }^{64} \mathrm{Cu}$ decay scheme. Only 19.3% of the ${ }^{64} \mathrm{Cu}$ decays emit a positron. Thus the calculated ${ }^{64} \mathrm{Cu}$ efficiency for coincidence detection of both annihilation gamma rays in the 511-keV photopeak is (47.7\%)*0.193 or 9.21\%. This efficiency estimate is for a point ${ }^{64} \mathrm{Cu}$ source not a rod. Since the ${ }^{64} \mathrm{Cu}$ activity is distributed over the f-inch diameter, 4 -inch long rod, this estimate will be an upper limit. For points off the crystal axis one of the gamma rays will have a shorter path in the crystal resulting in a lower interaction probability.

2.5.1.2 Comparison to a Standardized 22 Na Source

The absolute ${ }^{64} \mathrm{Cu}$ detection efficiency can be estimated by comparison to a standardized ${ }^{22} \mathrm{Na}$ source. The use of the ${ }^{22} \mathrm{Na}$ source is not practical because 1) it is a point source and the ${ }^{64} \mathrm{Cu}$ is a rod shaped source, and 2) the $1274-\mathrm{keV}$ gamma ray of ${ }^{22} \mathrm{Na}$ interferes. Although accurate standardization using the ${ }^{22} \mathrm{Na}$ source was not practical, the following exercise is instructive in demonstrating the difficulties. Figure 2.1 shows the decay scheme of both ${ }^{84} \mathrm{Cu}$ and ${ }^{22} \mathrm{Na}$.

FIGURE 2.1. Decay Schemes of ${ }^{64} \mathrm{Cu}$ and ${ }^{22} \mathrm{Na}$

Like ${ }^{64} \mathrm{Cu},{ }^{27} \mathrm{Na}$ also decays by positron (β^{4}) emission which produces a pair of $511-\mathrm{keV}$ annihilation gamma rays. The ${ }^{22} \mathrm{Na}$ source can be used to adjust the electronics (photopeak windows and timing) for maximum detection efficiency for the pair of $511-\mathrm{keV}$ gamma rays. it can also be used to insure system stability during a multiday measurement period.

For ${ }^{22} \mathrm{Na}$ \{2.602-year half life\}, 90.46% of the total radioactive decays result in positron eqission and 9.5% result in an electron capture. However, nearly all of the ${ }^{22} \mathrm{Na}$ decays pass through the $1.274-\mathrm{MeV}$ excited state of ${ }^{22} \mathrm{Ne}$ *ith subsequent $1.274-\mathrm{MeV}$ gamma-ray emission. This $1.274-\mathrm{MeV}$ gamma-ray emission somewhat spoils the ${ }^{22} \mathrm{Na}$ calibration process for positron annihilation gamma rays. If the $1.274-\mathrm{MeV}$ gamma ray interacts with one of the two Nal(Tl) crystals: its energy will add to the $511-\mathrm{keV}$ gamma-ray energy and remove che interaction from the $511-\mathrm{keV}$ photopeak regisn. Thus the ${ }^{22} \mathrm{Na}$ coincidence
count rate of detections in both $511-\mathrm{keV}$ photopeak regions can be significantly less than the coincidence detection rate of positron annihilation gamaa rays.

Calculations of ${ }^{\mathbf{2 2}} \mathrm{Na}$ probabilities and efficiencies in the manner of the previous section are instructive. Results for both cases may be found in Table 2.1. The total cross section for a $511-\mathrm{keV}$ gamma ray in NaI(Tl) is 0.34 cm^{-1} for an interaction length of $2.94 \mathrm{~cm}(1.16$ inches). The total cross section for a $1.27-\mathrm{MeV}$ gamma ray in $\mathrm{NaI}(\mathrm{Tl})$ is $0.18 \mathrm{~cm}^{-1}$ for an interaction length of 5.55 cm (2.19 inches). The probability for a single 511-keV gamma ray entering and interacting in one $6^{\prime \prime} x 6^{\prime \prime}$ crystal is 40.8%. For a single $1274-\mathrm{keV}$ gamaa ray the probability is 33.7%.

When the probability of detecting the subsequent $1274-\mathrm{keV}$ gamma ray in either crystal (67.5\%) is considered, the probability of a cuincidence between two $511-\mathrm{keV}$ photopeak counts without considering the $1274-\mathrm{keV}$ gamma (47.7\%) must be reduced by the probability that the $1274-\mathrm{keV}$ gamma ray not interfere (1-.675). The probability of coincidence in the $511-\mathrm{keV}$ region becomes $0.477 * 0.325$ or 15.5% of the ${ }^{22} \mathrm{Na}$ positron emissions to the $1274-\mathrm{keV}$ excited state. The efficiency for the $511-\mathrm{keV}$ region coincidence increases when the crystal separation is slightly increased because the $1274-\mathrm{keV}$ gamma is less likely to interfere.

The efficiency for ${ }^{\mathbf{2 2}} \mathbf{N a}$ is the product of detection probabilities and the fraction of decays following each possible decay path. Thus the ${ }^{22} \mathrm{Na}$ efficiency is (15.5\%)*0.904 + (47.7\%)*0.0006 or 14.04\%.

The last item in the Table 2.1 is the efficiency for making a detection in both crystals with sufficient energy to be above the lower limit of the 511-keV region in both crystals. This will occur when both $511-\mathrm{keV}$ gamma rays deposit full energy (47.7\%) or when one 511-keV gamma ray deposits full energy in one crystal but the other $511-\mathrm{keV}$ gamma ray does not but the $1274-\mathrm{keV}$ makes up the difference. The combined probability of 1) both 511-keV gamma rays interacting in the crystals (0.746), 2) one depositing full energy (0.8), 3) the other not depositing full energy (0.2), and 4) the 1274-keV gamma interacting in the "not" crystal (0.337) is 0.0402 . This must be multiplied by 2 since either crystal could have had the full $511-\mathrm{keV}$ energy to yield 8.04%. The combined probability of 1) one $511-\mathrm{keV}$ gamma ray interacting in one crystal (0.408), 2) it depositing full energy (0.8), 3) the other $511-\mathrm{keV}$ gama ray entering the other crystal but not interacting ($1-0.408 / 0.4585=0.110$), and 4) the 1274-keV gamma interacting in the not crystal (0.337) is 0.012. Similarly this must be multiplied by 2 to yield 2.42\%. Thus the ${ }^{22} \mathrm{Na}$ efficiency for an above threshold coincidence is $0.904 *(47.7 \%+8.04 \%+$ 2.42\%) $=52.6 \%$.

TABLE 2.1. Calculated ${ }^{64} \mathrm{Cu}$ and ${ }^{22} \mathrm{Na}$ Efficiencies

$6^{\prime \prime} \times 6^{\prime \prime} \mathrm{NaI}(\mathrm{Tl})$ crystal separation	0.50 inch	0.75 inch
	$\begin{aligned} & \text { Probability of } \\ & 45.85 \% \text {. } 43.80 \% \end{aligned}$	
a gamma entering one $6^{\prime \prime} \times 6^{\prime \prime}$ crystal		
1274 keV gamma ray interacting in one $6^{\prime \prime} \times 6^{\prime \prime}$ crystal	33.7\%.	31.1%
511 keV gamma ray interacting in one 6"x $6^{\prime \prime}$ crystal	40.8\%	38.0\%
511 keV pair interacting in two $\mathrm{NaI}(\mathrm{Tl})$ crystals	74.6\%	68.4\%
511 keV pair depositing full energy in two $\mathrm{NaI}(\mathrm{Tl})$	47.7%	43.8%
511 keV photopeak coincidence (with 1274 problem)	15.5\%	16.5\%
	```Efficiency (100%*cts/decay)```	
511 keV photopeak coincidence ${ }^{64} \mathrm{Cu}$ ( $\mathrm{path}=19.3 \%$ )	9.21\%	8.45\%
	14.0\%	14.9\%
511 keV and above coincidence ${ }^{22} \mathrm{Na}$ ( $\mathrm{path}^{\text {a }} 90.4 \%$ )	52.6\%	48.0\%

These calculated results can be compared to ${ }^{22} \mathrm{Na}$ measurements in order to judge how realistic they are. The GPU ${ }^{22} \mathrm{Na}$ source was labeled as $1.17 \mu \mathrm{Ci}$ on 11/11/82 which had decayed to $9029 \mathrm{~d} / \mathrm{s}$ by $9 / 28 / 88$.

The coincidence rate between windows containing the $511-\mathrm{keV}$ photopeaks was 1060 cps yielding a ${ }^{22} \mathrm{Na}$ efficiency of 0.117 cts/decay. This is slightly lower than the $14 \%$ expected from the above calculation. If the calculation were scaled to match the ${ }^{22}$ Na efficiency; the scaled ${ }^{64} \mathrm{Cu}$ efficiency would be $7.7 \%$ for case 1 or $6.6 \%$ for case 2.

When a spectrum of the ${ }^{\mathbf{2 2}} \mathrm{Na}$ detections in a single crystal was made with no coincidence requirement, the count rate above the $511-\mathrm{keV}$ photopeak region was 2887 cps , yielding a $32 \%$ efficiency. This compares reasonably well to the $33.7 \%$ calculated probability of the $1274-\mathrm{keV}$ gamma interacting in a single crystal. The experimental walue may be a little high since some of the interactimg 1274-keV gamma rays will deposit less than 511 kev in the crystal.

The coincidence rate between detections in or above the 511-keV photopeak region was obtained by changing the SCA mode from window to integral. The observed integral mode coincidence rate was 3650 cps corresponding to a $40.4 \%$ efficiency. This is considerably lower than the last entry in Table 2.1 perhaps indicating that the calculated efficiency for ${ }^{64} \mathrm{Cu}$ is too high. Matching the integral mode efficiency would scale the calculated ${ }^{64} \mathrm{Cu}$ efficiency estimate to $7.1 \%(9.21 \% * 40.4 / 52,6)$ for case 1 or 7.1\% for case 2.

### 2.5.1.3 Comparison to Efficiency of Packard-5 system at PNL

An alternate method, which experimentally determines the efficiency for the distributed copper rods, involves 1 ) counting copper rods (which were activated at GPU by a neutron source in a cave) with the two NaI(Tl) coincidence systems used at TMI, 2) flying the rods back to PNL, and 3) counting the rods on the calibrated Packard-5 system. The Packard-5 efficiency for ${ }^{64} \mathrm{Cu}$ distributed in a 6 -inch long, $1 / 4$-inch diameter copper rod is $19.39 \mathrm{~d} / \mathrm{c}$ or 5.157\%. The efficiency for a 4 -inch long rod will be slightly greater than for the 6 -inch $\log$ rod. Our best estimate of the efficiency for a 4 -inch long rod is $19.04 \mathrm{~d} / \mathrm{c}$ or $5.252 \%$ based on efficiency measurements of $20.44 \mathrm{~d} / \mathrm{c}$ on a 4 -inch diameter disk and $21.20 \mathrm{~d} / \mathrm{c}$ on a 6 -inch diameter disk. The rod length correction scales as the square root of the d/c values at the two disk diameters since only a one-dimensional scaling is necessary for the rod. The Packard-5 system consists of two 9 -inch diameter crystals separated by 1 inch.

The activated copper rods and identical unactivated copper rods were both flown back and counted at PNL after counting at TMI. Cosmic-ray induced ${ }^{64} \mathrm{Cu}$ activity from the plane ride was equally present in both activated and unactivated rods so it could be subtracted out.

Seven copper rods were placed for activation in a concrete block cave with a neutron source. The rods were removed on 9-28-88 at 14:22 EDT after being in the cave for about 120 hours. Since this produced $99.85 \%$ of maximum or saturation ${ }^{64} \mathrm{Cu}$ activity in the rods, the exact entrance time was not important.

TABLE 2.2. Packard-5 Count Data for Rods Activated in Cave

Label	Item counted	Count Start Time   Pacific Daylight	Duration   (min)	Count   (cts)	Count Rate   (cpm)
P1	8 rods cosmic only	$9-29-88$ e $15: 08$	60	94	1.566
P2	1 rod L2 activated	$9-29-88$ e $16: 16$	60	746	12.43
P3	1 rod L6 activated	$9-29-88$ e $17: 33$	60	740	12.333
P4	1 rod L6 activated	$9-29-88$ e $17: 33$	1120	8143	7.2705
P5	22 rods cosmic	$9-30-88$ e $13: 47$	3260	1510	0.46319
P6	22 rods cosmic	$10-3-88$ e $14: 11$	1318	162	0.12291
P7	empty	$10-10-88$ e $14: 22$	100	15	0.15

The background count rate with no activity in the system was taken as 0.1229 cpm from the last count after considerable decay time. This was justified based on the 0.15 cpm background from the empty cave. (The presence of the copper mass absorbs radiation scattered from one crystal into the other and reduces the system coincidence background.)

Based on the $5.252 \%^{64} \mathrm{Cu}$ counting effiwiency for $1 / 4^{67}$-inch diameter: 4inch long copper rod, the activating neutron flux can be calculated and is listed in Table 2.3 below.

TABLE.2.3. Neutron Flux Estimates Based on Packard-5 Measurements

Label Item counted	Flux eatimate $\mathrm{n} /\left(\mathrm{s} \mathrm{Cl}^{\mathrm{z}}\right)$	* Error	decays/min per rod at $t=0$
Pl rods cosmic only	0.33(4)	12.2\%	16
P2 1 rod L2 activated	23.60(87)	3.7\%	1166
P3 1 rod L6 activated	25.10(93)	3.7\%	1241
P4 1 rod L6 activated	24.28(27)	1.1\%	1200
P5 22 rods cosmic	0.297(18)	6.18	14
P6 22 rods cosmic	used as background estimate		
Plux seen by rod	24.0(3)	1.2\%	1184

The data is not sufficient to make a clain that the ${ }^{64} \mathrm{Cu}$ activity in rod L6 was significantly greater than that in rod L2. The average actiyity in the three rod measurements indicated a flux of $24.32 \mathrm{n} /\left(\mathrm{s}^{*} \mathrm{~cm} \mathrm{~m}^{2}\right)$. However the cosbit rays induced an activity during the airplane ride to PNL which would account for a $0.30 \mathrm{n} /\left(\mathrm{s}^{\star} \mathrm{cm}^{2}\right)$ flux. Using the $P 4$ measurement as the most accurate, the estimated neutron flux in the cave at TMI was 24.0 (3) $\mathrm{n} /\left(\mathrm{s} * \mathrm{~cm}^{2}\right)$.

The ${ }^{64} \mathrm{Cu}$ decay rate when the rods were removed from the source was 1184 d/an. Trble 2.4 lists the efficiencies at TMI required to match the $1184 \mathrm{~d} / \mathrm{m}$ decay rate to the observed counting rates.

TABLE 2.4. Data from Sensors Used at GPU

Label	Rod	Cts/min at $\mathrm{t}=0$	Efficiency
LAl	L2	60.73	5.129\%
LB2	L6	55.82	4.714\%
LA2	L6	56.85	4.802\%
LB2	L2	53.80	4.544\%
LA4	L6	55.93	4.724\%
LB4	L2	55.24	4.666\%
LA10	L2	58.13	4.910\%
LB11	L6	54.50	4.603\%
	AVERAGE	56.38	4.762\%
	Std Err	2.21	0.187\%

The resulting absolute efficiency estimate for the two systems used at GPU was 4.8(2)\%. The fractional error in this calibration is only $3.9 \%$ which is acceptable considering the $2.8 \%$ counting statistics obtained for the single, activated rod counts at GPU. This efficiency value is less than the previous estimates for a point source as it should be.

### 2.5.1.4 Computer Code Modeling with EGS4

Harry Miley modeled the TMI measurement system geometry with the EGS4 (electron gamma shower) code from SLAC. He found the TMI system efficiency (counts/decay) for a $1 / 4$-inch diameter, 4 -inch long copper rod to be $7.72 \%$ with the $6^{\prime \prime} \times 6^{\prime \prime} \mathrm{NaI}(\mathrm{Tl})$ crystal pair and $1 / 2^{\prime \prime}$ separation. He found the Packard-5 efficiency for a $1 / 4$-inch diameter, 6 -inch long copper rod to be $8.78 \%$ with the $9^{\prime \prime} \times 8^{\prime \prime} \mathrm{NaI}(\mathrm{Tl})$ crystal pair with $\mathrm{l}^{\prime \prime}$ separation. The $8.78 \%$ was 70\% higher than the $5.16 \%$ experimental calibration value. The ratio between the TMI system and the Packard-5 (0.879) allows scaling between these systems which indicates $4.53 \%$ is the TMI efficiency.

This code did not take into account that the positron could escape the copper rod and be annihilated at another location. If the positron was annihilated in one of the crystals, it would carry kinetic energy into the crystal, possibly increasing the deposited energy enough to produce a pulse above the photopeak region. This would lower the efficiency from that calculated by the code. If the positron was annihilated at any position farther from the crystal axis, it would also have a lower efficiency.

### 2.5.1.5 Selection of Absolute Efficiency Value

A ${ }^{64} \mathrm{Cu}$ efficiency for the copper rods is less than a theoretical point source or a sealed disk source since 1) the rods are distributed sources and 2) the 511-keV gamma rays can interact in the thickness of the copper rod. When a ${ }^{64} \mathrm{Cu}$ decay or positron annihilation occure off axis, one gamma ray of the $511-\mathrm{keV}$ pair will travel considerably less distance in the crystal than the distance used in the on axis calculation reducing the coincidence probability. When a gamaa ray interacts before entering the crystal, it will not have sufficient energy to cause a coincidence count.

The efficiency value used to reduce the coincidence counts to ${ }^{64} \mathrm{Cu}$ activity is 4.8(2)\%. This value was obtained from the Packard-5 cross calibration which is considered the most accurate method since no modeling approximations are necessary.

Note that the estimate of the remaining fuel is proportional to the flux measurement and the flux estimate is inversely proportional to the efficiency used. Given the coincidence count, using the lowest efficiency value of those reasonably supportable yields the highest estimate for the amount of residual
fuel, This is conservative in that we seek to place an upper liait on the amount of residual fuel in the OTSGs.

### 2.5.2 Relative Efficiency Based on Position

The efficiency for counting the copper coupons varies depending on which of the seven positions in the plastic sample holder the copper coupon occupies. When single coupons are counted only the center position was used. However, when qultiple coupons were counted, the non-central positions were also used. The relative efficiencies for detection at each position are listed in Table 2.5 below. These values were obtained by placing either the GPU ${ }^{22} \mathrm{Na}$ source or a neutron activated copper rod in each position and comparing the count at that position to the count in the central position. For the copper rod walues ${ }^{64} \mathrm{Cu}$ decay was taken into account. The efficiencies observed were not exactly syanetric about the central position since the source holder was not exactly centered on the crystals. The actual OTSG flux neasurements were accomplished using combinations of 1,$3 ; 6$, and 7 rods counts. The average relative efficiency factors for these three aultiple-rod configurations are also listed in the table.

## TABLE 2.5. Relative Efficiencies at the Rod Positions

Position	```Relative Efficiency System #1 GPU '22Na Cu rod Point Extended```		```Relative Efficiency System #z GPU '22Na Cu rod Point Extended```	
	outer wall near post		cave center wall   0.9076	
1	0.8638 *	0.654 *		
2	0.9489	0.857	0.9788	0. 919
3	0.9895	0.994	1.0009	0.977
4	1.0000	1.000	1.0000	1.000
5	0.9909	0.947	0.9878	0.970
6	0.9610	0.918	0.9388	0.865
7	$\begin{aligned} & 0.8928 \\ & \text { cave center } \end{aligned}$	0.708	$0.845 \text {; }$   cave outer	$\begin{aligned} & 0.688 \text { * } \\ & \text { wall } \end{aligned}$
		wall		
7-position average	0.9496	0.868	0.9514	0,876
6 -position average	0.9639	0.904	0.9690	0.906
3-position average	0.9935	0.981	0.9962	0.983
* omitted in 6-position average since lowest efficiency position not used				

The point source efficiency for the extreme positions is about $10 \%$ to $15 \%$ lower than in the central position. The rod source efficiency for the extreme positions is about $30 \%$ to $35 \%$ lower than in the central position. The difference in efficiency between the ${ }^{22} \mathrm{Na}$ point source and the extended ${ }^{64} \mathrm{Cu}$ rod
source is strictly due to less favorable geometry (i.e., the rod ends of the outer rods are in a very unlavorable counting position relative to points on the crystal axis. The relative efficiencies for the point sources only point out that the reduced counting efficiency of the extended rod source can be significant.

The counting efficiencies for multiple rod counts will be reduced by the corresponding average relative efficiency value for the copper rods from the above table. Also since the count provides no information as to relative coupon activity in a multiple coupon measurement, the error in the flux measurement will be arbitrarily increased by $5 \%$ to cover this efficiency variation.

### 3.0 STATISTICAL CONSIDERATIONS

### 3.1 INTRODUCTLON

The statistical nature of this measurement is important and has been separated out from the other aspects for clarity.

### 3.2 ERROR PROPAGATION

The neutron flux is linearly related to the ${ }^{64} \mathrm{Cu}$ activity in the copper coupons. Therefore, the percentage error in the net ${ }^{64} \mathrm{Cu}$ count and in the neutron flux are the same.

The estimate of the ${ }^{84} \mathrm{Cu}$ count is the coincidence count minus the average background coincidence count. The error estimate for the coincidence counts must be taken as the faisson standard error [square root of the coincidence countl. This is required since repeated measurements are not feasible due to 1) the substantial ${ }^{64} \mathrm{Cu}$ decay during the counting time, and 2) the long counting times required. The error estimate for the net ${ }^{54} \mathrm{Cu}$ count is taken to be equal to the square root of the sum of 1) the raw coincidence count and 2) the variance of the background estimate. The variance of the background estimate is the standard error in the mean of all the background measurements taken on site. It is not the square root of the background count expected during the one measurement. The Poisson statistical fluctuations during the one measurement have been included in the error estimate of the raw coincidence count and need not be included a second time. For example, when normally distributed data with a mean are transformed to have a mean of zero, the sample variance is not increased by subtracting the mean from each point. In this case, in the variance of the background estimate is small compared to the coincidence count since the average background value is known to much greater precision from the several long background counts obtained over the experimental period. Although the error in the background estimate could have been neglected, it has been included in our data reduction program.

More than one independent measurement of the neutron flux at points in the OTSG were obtained because more than one count of the various copper coupon groups was made. These measurements are not of equal statistical value since they were made at different times, and the ${ }^{64} \mathrm{Cu}$ activity had decayed to different levels for each measurement. The ${ }^{64} \mathrm{Cu}$ decay makes it incorrect to statistically combine the net count values for the independent measurements. Instead the neutron flux estimates must be statistically combined, since the radioactive decay has been taken into account in the calculation of these values. Also some of the later measurements were made for longer counting durations, in an effort to make the later flux measurements comparably significant to the earlier measurements. To combine the several measurements a
weighted average was used, Each measurement $x_{1}$ was weighted by $1 / s_{i}{ }^{2}$ where $s_{i}$ is the standard error associated with the i-th measurement, $x_{i}$. The weighted wean, 〈 $X\rangle$, and its associated standard error in that mean; $S_{x}$, are given by

$$
\langle X\rangle=\frac{\sum_{i=1}^{N} \frac{x_{i}}{s_{i}{ }^{2}}}{\sum_{i}^{N} \frac{1}{2}} \quad \text { and } \quad \frac{1}{s_{x}{ }^{2}}=\sum_{i=1}^{N} \frac{1}{s_{i}{ }^{2}}
$$

This formula can be derived from the Normal distribution by the method of maximum likelihood. It is also a minimum variance unbiased estimate.

Also as an added check the multiple flux measurements can be combined by the normal averaging process to insure that the weighted average has not produced an unrealistic result. The normal average of " $N$ " independent measurements produces a mean, "m", a standard deviation of the distribution of measurements, " $s$ ", and a standard error of the estimated mean, " $s$ " "

$$
\begin{array}{ll}
m=\frac{1}{n} \sum_{i=1}^{N} x_{i} & s_{m}=\frac{s}{\sqrt{n}} \\
\left.s^{2}=\frac{1}{n-1} *\left[\sum_{i=1}^{N}\left[x_{i}\right]^{2}\right]-\frac{1}{n} *\left[\sum_{i=1}^{N} x_{i}\right]^{2}\right]
\end{array}
$$

Note that we are using this standard average as a double check on the weighted average.

### 3.3 SLONIFICANCE OF THE TNDIYLDUAL NET *4Cu COUNTS

The significance of a small number of net ${ }^{6} \mathrm{Cu}$ counts is determined by the ability to reject the null hypothesis that the associated coincidence count is due only to the atatistical variations in background. The significance is quantized by a false alarm probability, FAP, which is the fractional area under the background distribution function corresponding to an observed count or higher.

If the background distribution function is lor can be approximated by) a normal probability function, the coincidence count increase can be measured in terms of the number of sigmas (standard deviations). This measure has meaning
to statisticians and is quite common. However, the normal distribution is not necessarily a good approximation when the number of coincidence counts is relatively small, since the Poisson distribution only approaches the Normal distribution for large counts. Thus the FAP should be calculated directly from the Poisson distribution function with the Poisson mean equal to the expected background count.

Once a FAP is selected, it can be used to calculate a single-count threshold for rejecting the null hypothesis. If sufficient non-background radioactivity is present to make the average signal plus the mean background estimate for a given measurement time equal to the corresponding single-count threshold, there is a $50 \%$ chance that the count obtained in a single interval will exceed that threshold. It is therefore generally implied that a $50 \%$ detection probability (DP) is desired for a minimum detectable level (MDL) of additional activity. One can require a different detection probability, but the single-count threshold depends only on the selected FAP value and the measurement time, not the detection probability.

The Poisson FAP is calculated by

$$
\begin{aligned}
& \operatorname{FAP}(N ; \mathbb{\infty})=\left[\sum_{I=N}^{\infty} \frac{m^{I}}{I!} * e^{-m}\right] \\
& \operatorname{FAP}(N ; \mathbb{m})=1-\left[\sum_{I=0}^{L^{N-1}} \frac{m^{I}}{I!} e^{-m}\right]
\end{aligned}
$$

where $\operatorname{FAP}(N ; \mathbb{N})$ " is probability of pure background producing a count of "N" or more in an interval given a mean background value of " $m$ " counts for that interval. The infinite sum can be replaced by a finite sum since the Poisson distribution is normalized. The finite sum is often used for numerical calculation of the FAP, but double precision arithmetic is called for to avoid roundoff errors for small FAP values. Note that since the FAP is calculated correctly from the Poisson distribution, the count threshold for a given FAP significance need not be artificially increased for low counts as it might be if the count threshold were calculated using the normal distribution approximation.

The value one selects for the false alarm probability acceptable for a given application is somewhat arbitrary. The selection of the FAP is generally based on the number of measurements made and the expense of acting on a false alarm. Some people like dealing with a $95 \%$ confidence level corresponding to a $\mathrm{FAP}=0.05$ or a 1.66 -sigma threshold from a normal distribution. A $99 \%$ confidence level corresponds to $\mathrm{FAP}=0.01$ or a 2.33 -sigma threshold in a normal
variable. The most common choice for the FAP is FAP=0.001 or a 3.1-sigma threshold. If a large number of measurements are made and false alarms are expensive to chase down, a higher threshold is used, such as FAP=0.0001 or a 3.73-sigaa threshold. A A.65-sigma threshold of a normally distributed variable corresponds to a FAP=1.7E-6. The FAP walues will be listed for each of our measurements to allow individual preference for a FAP threshold to be used in evaluating the significasce of an individual measurement.

Generally a count less than 3-sigma [normal distribution FAP > 0.0013] above background is not considered a real increase over background, but only a variation in the background. At a FAP=0.001 threshold, one measurement out of every thousand will exceed that threshold due to background statistical variations. A false alarm probability of less than 0.001 is considered adequate to indicate the presence of ${ }^{64} \mathrm{Cu}$ activity in our copper rods. Although the FAP threshold is in principle independent of possible ${ }^{84}$ Cu activity, the sensors are set up to uniquely respond to ${ }^{64} \mathrm{Cu}$ and no other radioisotope will be made in the bulk of the copper rods by neutron, gamma-ray, or beta flux experienced in the OTSGs. By not selecting an extremely low PAP value as the threshold we are factoring in the controlled nature of the experiment.

### 3.4 SIONIFICANCE OF MULTLPLE COUNTS

When making measurements looking for ${ }^{64} \mathrm{Cu}$ activity, several (typically four) independent measurements were made on the same set of six copper rods and of ten none of the measurements was greater than the single-count threshold established by the FAP<0.001 requirement. However, the individual measurements of the set were of ten all above the background value. Intuition indicates that a set of measurements all slightly above the background mean can be just as unlikely as one measurement above the single-count FAP threshold because a set of background measurements should be statistically scattered above and below the mean. Thus when one has several repeated, independent counts exceeding the mean background estimate by less than the singlemcount FAP threshold, one should consider a real cause for the increase and seek a means of calculating a false alarm probability for the set of measurements rather than only for single measurements.

### 3.4.1 A Search for a Method to Conbine RAPS

A measure of the significasce of the independent set of measurements (all above background) is desirable. One might wish to estimate the probability of obtaining a set with the observed or higher values as the product of the individual false alarm probabilities. However, just using the product of individual Faps is generally incorrect since it does not take into account possible permutations of the measurement order.

### 3.4.1.1 Dice Rolling Example

Consider the analogous situation of finding the probability of rolling a 5-or-higher on several successive dice rolls. On one toss the probability of rolling a 5 or 6 is only 0.33 , but the probability of a 5 or 6 on each of seven consecutive tosses drops to 0.00046 , which would satisfy the FAP<10 ${ }^{-3}$ requirement. Using the probability product in this case would be correct, as long as all the tosses were greater than or equal to the 5 -or-more threshold used. Note that one can not pick out the seven highest tosses from a greater number of tosses and use the product. However, if one wished to claim greater unlikelihood for his seven tosses by calculating the probability of three 5-or-greater and four 6-or-greater tosses corresponding to what was actually rolled on the seven tosses, one would need to be very careful.

When different values are obtained for independent tosses, care must be used to correct for possible equivalent permutations in the measurement order when calculating a combined probability. For example, consider the problem of rolling two dice as detailed in Table 3.1 below. One can toss two dice and get a 4 on one and a 5 on the other. One may then calculate a combined probability, $P(4 \& 5)$, of a 4 -or-more on one die, $P(4 \leq n)=3 / 6$, and 5 -or-more on the other, $P(5 \leq \Omega)=2 / 6$. The product, $P(4 \leq \Omega) * P(5 \leq \Omega)$, is $6 / 36$. However, when one examines the 36 equally probable possible two-dice outcomes found in Table 3.1 below, one finds that the 8 highlighted outcomes satisfy ( $4 \leq n$ ) on one and ( $5 \leq \Omega$ ) on the other, not the 6 indicated by the product. The desired combined probability, $P(4 \& 5)=8 / 36$, is less than 4 -or-more on both, $[P(4 \leq n)]^{2}=9 / 36$, but greater than 5 -or-more on both, $[P(5 \leq n)]^{2}=4 / 36$. Two correct methods of calculating the desired, combined probability $P(4 \& 5)$ exist

$$
\begin{aligned}
P(4 \& 5) & =[P(4 \leq n)]^{2}-[P(4 \leq n<5)]^{2}=[3 / 6]^{2}-[1 / 6]^{2}=8 / 36 \\
P(4 \& 5) & =[P(5 \leq n)]^{2}+2 *[P(4 \leq n<5)] *[P(5 \leq n)] \\
& =[2 / 6]^{2}+2 *[1 / 6] *[2 / 6]=8 / 36
\end{aligned}
$$

where the 2 in the second term of the second method takes into account that either die could have had the smaller value, 4. As one can easily imagine, handling several tosses with unequal probability for each result can rapidly become a bookkeeping nightmare.

TABLE 3.1. Possible Outcomes for Rolling Two Dice

Die \#1	Die \#2 ${ }^{\text {a }} 1$	2	3	4	5	6
1	$1+1=2$	$1+2=3$	$1+3=4$	$1+4=5$	$1+5=6$	$1+6=7$
2	$2+1=3$	$2+2=4$	$2+3=5$	$2+4=6$	$2+5=7$	$2+6=8$
3	$3+1=4$	$3+2=5$	$3+3=6$	$3+4=7$	$3+5=8$	$3+6=9$
4	$4+1=5$	4+2=6	$4+3=7$	$4+4=8$	$4+5=9$	$4+6=10$
5	$5+1=6$	$5+2=7$	$5+3=8$	$5+4=9$	$5+5=10$	$5+6=11$
6	$6+1=7$	$6+2=8$	$6+3=9$	$6+4=10$	$6+5=11$	$6+6=12$

### 3.4.1.2 Poisson Counts Example

Another method one might wish to use for calculating the combined significance of independent counts would be to sum separately the actual counts and the expected background counts and pretend that it was really one longer count. Consider a realistic Poisson count example detailed in Table 3,2 below, with a background mean of 25. If two counts of $34(25+9)$ occur, each With FAP=0.04978, the probability of two successive counts with 34-or-more is $2.478 \mathrm{E}-3$ by squaring the FAP. If these tho counts are grouped into a single $68(50+18)$ count, one can calculate the $F A P=8.879 \mathrm{E}-3$ for the longer count. The combined count FAP is greater than the probability of two successiye counts with 34 -or-more since there are additional possible combinations of two counts which will produce the 18 extra counts. The FAP obtained by combining measurements into a single long count will generally be higher than necessary: The method of combining counts into one long count is a conservatiye method of calculating a FAP for a group of measurements.

The method used in the previous dice example will be referred to as the combined FAP method. This method, which takes into account permutations of measurement order, can be applied to the example of tho Poisson counts. One of the combinations providing 18 extra counts divided between two individual counts is a count of $33(25+8)$ with FAP $=7.146 \mathrm{E}-2$ and a count $35(25+10)$ with FAP=3.384E-2. Combining these two by the same scheme used in the dice examm ple, $[P(35 \leq n)]^{2}+2 *[P(33 \leq n<35)] *[P(35 \leq n)]$ yields a combined FAP of $3.691 E-3$, which is greater than the product of the two FAPs (2.418E-3). Table 3.2 belon lists several of the other possible combinations of dividing 18 extra counts between two measurements along with the combined FAP just calculated. The columns headed "Poisson FAP" are Poisson false alarm probabilities for a single count based on a mean of 25 counts.

TABLE 3.2. Possible Means of Getting 18 Extra Counts in Two Measurements Each with a Background Mean of 25 Counts

Count \#1	Poisson   FAP \#1	Count \#2	Poisson   FAP \#2	Combined   FAP	Product   of FAPs			
$34(25+9)$	0.04978	$34(25+9)$	0.04978	0.002478	0.002478			
$35(25+10)$	0.03384	$33(25+8)$	0.07146	0.003691	0.002418			
$36(25+11)$	0.02245	$32(25+7)$	0.1001	0.003991	0.002247			
$37(25+12)$	0.01455	$31(25+6)$	0.1367	0.003766	0.001989			
$38(25+13)$	0.009211	$30(25+5)$	0.1821	0.003270	0.001677			
$39(25+14)$	0.005696	$29(25+4)$	0.2366	0.002663	0.001348			
$40(25+15)$	0.003444	$28(25+3)$	0.2998	0.002053	0.001033			
$41(25+16)$	0.002036	$27(25+2)$	0.3706	0.001505	0.0007545			
$42(25+17)$	0.001177	$26(25+1)$	0.4471	0.001051	0.0005262			
$43(25+18)$	0.000666	$25(25+0)$	0.5266	0.000701	0.0003507			
$68(50+18)$	0.008879		sum $=0.025169$					0.0148214

The combined FAP method gives realistic values for the combined FAP. When the two counts are equal the formula gives just the square of the individual FAPs as it should since no extra permutations of measurement order are possible. The combined FAPs are always less likely than the individual faps except in the last case, where one of the two measurements matched background. In that last case, the combined FAP is only slightly higher than the lowest individual $F A P$ and the combined FAP would not have been higher if the second FAP were above one half. The combined FAP values are always higher than the product of individual FAPs, which do not consider permutations. They asymptotically approach twice the product as one of the individual FAPs become smaller. In all cases, it is less than half the combined-count FAP making the effort in calculation worthwhile. The sum of the combined FAPs is reasonably higher than the combined-count FAP since the individual combined FAPs overlap areas of probability space.

The scheme combining the counts into one long count results in a FAP which is always higher than the scheme directly combining Faps. This is understandable in that two independent measurements provide more information than the single longer measurement. Using this extra information should result in a lower fap value. Note there is a point of diminishing return in dividing counts up into several shorter counts due to loss of precision in very short counts. Also the combined-count FAP is higher than several of the individual Poisson FAPs which is not desired. There is no reason a second above mean measurement should increase the likelihood of the first count belonging to the background distribution.

The fact remains that a set of several successive marginally higher than background counts is just as unlikely as one significantly higher than background count. Note that combining the FAPs of several marginal increased
counts can be used to convince someone that a real cause exists for those increases even though each increase is below the single-count threshold calculated for a given FAP. The problem as pointed out before is handling the bookkeeping nightaare associated with coubining several counts.

### 3.4.2 Recipe for Directly Combining FAPS

The solution to the bookkeeping nightmare is using multinomial coefficients. The multinomial coefficient, $\left(N ; n_{1}, n_{2}, n_{y}, \ldots, n_{m}\right)$ is the number of ways of putting $N=n_{1}+n_{2}+n_{3}+\ldots+n_{1}$ different objects into 0 different boxes with $n_{k}$ objects in the $k$-th box for $k=1$ to $\mathbb{m}$. The multinomial coefficients are defined as

$$
\begin{aligned}
& \left(N ; n_{1}, n_{2}, n_{3}, \ldots, n_{m}\right)=\frac{N!}{n_{1}: * n_{2}: * n_{3}!* \ldots n_{m}} \\
& =N!/ \sum_{i=1}^{n}\left(n_{i}!\right) \\
& \text { subject to } \quad N=n_{1}+n_{2} * n_{3}+\ldots+n_{m}=\sum_{i=1}^{i=n_{i}} n_{i}
\end{aligned}
$$

The values of the aultinomial coefficients for small $N$ values appear in the following table for convenience.

N	■	$\left(N ; n_{1}, \ldots . . n_{n}\right)$	$\left(N ; n_{1}, \ldots . n_{n}\right)$	$\left(N ; n_{1}, \ldots n_{n}\right)$
1	1	$(1 ; 1)=1$		
2	1 2	$\begin{aligned} & (2 ; 2)=1 \\ & (2 ; 1,1)=2 \end{aligned}$		
3	1 2 3	$\begin{aligned} & (3 ; 3)=1 \\ & (3 ; 1,2)=3 \\ & (3 ; 1,1,1)=6 \end{aligned}$		
	1 2 3 4	$\begin{aligned} & (4 ; 4)=1 \\ & (4 ; 1,3)=4 \\ & (4 ; 1,1,2)=12 \\ & (4 ; 1,1,1,1)=24 \end{aligned}$	$(4 ; 2,2)=6$	
	1 2 3 4 5	$\begin{aligned} & (5 ; 5)=1 \\ & (5 ; 1,4)=5 \\ & (5 ; 1,1,3)=20 \\ & (5 ; 1,1,1,2)=60 \\ & (5 ; 1,1,1,1,1)=120 \end{aligned}$	$\begin{aligned} & (5 ; 2,3)=10 \\ & (5 ; 1,2,2)=30 \end{aligned}$	
	1 2 3 4 5 6	$\begin{aligned} & (6 ; 6)=1 \\ & (6 ; 1,5)=6 \\ & (6 ; 1,1,4)=30 \\ & (6 ; 1,1,1,3)=120 \\ & (6 ; 1,1,1,1,2)=360 \\ & (6 ; 1,1,1,1,1,1)=720 \end{aligned}$	$\begin{aligned} & (6 ; 2,4)=15 \\ & (6 ; 1,2,3)=60 \\ & (6 ; 1,1,2,2)=180 \end{aligned}$	$\begin{aligned} & (6 ; 3,3)=20 \\ & (6 ; 2,2,2)=90 \end{aligned}$

If N independent measurements produce a set of N FAPs, arrange them in descending order and label them $\mathrm{FAP}_{\mathrm{i}}$ for $\mathrm{i}=1$ to N . These can be used together with $\mathrm{FAP}_{\mathrm{N}+1}=0$ and $\mathrm{FAP}_{\mathrm{O}}=1$ to produce $\mathrm{N}+1$ bands of probability, which we define as

$$
P_{i}=F A P_{i}-F A P_{i+1} \quad \text { for } i=0 \text { to } N
$$

Note that $P_{N}=F_{A P}$ and $P_{0}=1-$ FAP $_{1}$. These $N+1$ probability bands ( $P_{0} \ldots P_{N}$ ) form a set which sum to 1 completely covering the probability space associated with each individual measurement. The $N$-th power of the summation is

$$
\left[\sum_{i=0}^{N} P_{i}\right]^{N}=\sum_{k} c_{k} *\left[P_{0}\right]^{j 0} *\left[P_{1}\right]^{j 1} * \ldots *\left[P_{i=N}\right]^{j N}=1
$$

where the sumation runs over all possible values of the $j$ 's subject to the constraint, $j 0+j 1+j 2+\ldots+j N=N$. The coefficients; $c_{k}$, are the multinomial coefficients corresponding to the non-zero j-values. This sum is over all the regions of the probability space combining the $N$ independent measurements. Now to find the combined FAP for the set of $N$ measurements simply remove from the sum those terms which do not satisfy the desired criteria. The criteria are

```
j0=0 no measurement in the probability band below the lowest FAP
j1\leq1 a maximum of 1 measurement in band 1
j1+j2\leq2 if none in band #1, then 2 measurements allowed in band #2
j1+j2+\ldots...jNSN note jN`1 is required
```

For reference, some of the combination formulas for the smaller values of $N$ are listed below. To avoid running superscripts and subscripts together, notation will change. The subscripts on the $P$ 's will be combined into the symbol ( $P_{1}$ becomes $P 1, P_{2}$ becomes $P 2$, etc.).

For $N=2$ the normalized probability product is

$$
1=P 0^{2}+P 1^{2}+P 2^{2}+2 \# P 0 * P 1+2 \# P 0 * P 1+2 \# P 1 * P 2
$$

and the formula for the combined FAP is

$$
\text { FAP }=P^{2}+2 * P 1 * P 2
$$

All the terms with $P 0$ have been dropped since $j 0=0$ is a criteria. Also the term with $P 1^{2}$ has been omitted since $j 1 \leq 1$ is required. Note as general rules 1) no term with PO is considered and 2) no term without a PN is kept.

For $N=3$ the normalized probability product is

$$
\begin{aligned}
& 1=\mathrm{PO}^{3}+\mathrm{P}^{3}+\mathrm{P}^{3}+\mathrm{P}^{3} \\
& +3 * P 0 * \mathrm{P}^{2}+3 * \mathrm{P} 0 * \mathrm{P}^{2}+3 * \mathrm{P} 0 * \mathrm{P}^{2}{ }^{2} \\
& +3 * \mathrm{PO}^{2} * \mathrm{P} 1+3 * \mathrm{PO}^{2} * \mathrm{P} 2+3 * \mathrm{PO}^{2} * \mathrm{P} 3 \\
& +3 * \mathrm{P} 1 * \mathrm{P}^{2}+3 * \mathrm{P} 1 * \mathrm{P}^{2} \\
& +3 * \mathrm{P} 1^{2} * \mathrm{P} 2+3 * \mathrm{P}^{2} * \mathrm{P} 3 \\
& +3 * \mathrm{P} 2 * \mathrm{P}^{2} \\
& +3 * \mathrm{P}^{2} * \mathrm{P} 3 \\
& +6 * \mathrm{P} 0 * \mathrm{P} 1 * \mathrm{P} 2+6 * \mathrm{P} 0 * \mathrm{P} 1 * \mathrm{P} 3+6 * \mathrm{P} 0 * \mathrm{P} 2 * \mathrm{P} 3 \quad(3: 1,1,1) \text { terms } \\
& +6 * \mathrm{P} 1 * \mathrm{P} 2 * \mathrm{P} 3 \\
& \text { (3:3) terms } \\
& \text { (3:1,2)s with PO } \\
& \text { (3:1,2)s with P1 } \\
& \text { (3:1,2)s with P2 } \\
& \text { (3:1,1,1) terms }
\end{aligned}
$$

and the formula for the $N=3$ combined FAP is

$$
\mathrm{FAP}=\mathrm{P} 3^{3}+3 * \mathrm{P} 1 * \mathrm{P}^{2}+3 * \mathrm{P} 2 * \mathrm{P}^{2}+3 * \mathrm{P}^{2} * \mathrm{P} 3+6 * \mathrm{P} 1 * \mathrm{P} 2 * \mathrm{P} 3
$$

Note that all the terms with a $P 0$ factor were dropped $\left\{P^{3}, 3 * P 0 * P 1^{2}\right.$, $3 * P 0 * P 2^{2}, 3 * P 0 * P 3^{2}, 3 * P 0^{2} * P 1,3 * P 0^{2} * P 2,3 * P 0^{2} * P 3,6 * P 0 * P 1 * P 2,6 * P 0 * P 1 * P 3$, \& $6 * P 0 * P 2 * P 3\}$. Likewise, those without a $P 3$ factor were dropped $\left\{P 1^{3}, P 2^{3}\right.$, $3 * P 1 * P 2^{2}$, \& $\left.3 * P 1^{2} * P 2\right\}$ since $J N \geq 1$ is required. Also from the ( $3: 1,2$ ) terms, those with a $P 1^{2}$ factor were dropped $\left\{3 * P 1^{2} * P 3\right\}$ since $j 1 \leq 1$ is required.

For $\mathrm{N}=4$ the combination formula is

$$
\begin{aligned}
& \text { FAP }=\mathrm{P}^{4} \quad \text { (4:4) term with P4 } \\
& +4 * \mathrm{P} 1 * \mathrm{P}^{3}+4 * \mathrm{P} 2 * \mathrm{P} 4^{3}+4 * \mathrm{P} 3 * \mathrm{P}^{3} \quad(4: 1,3) \text { terms with } \mathrm{P} 4 \\
& 4 * P 3^{3} * \mathrm{P} 4 \\
& +6 * \mathrm{P}^{2} * \mathrm{P}^{2}+6 * \mathrm{P}^{2} * \mathrm{P}^{2}{ }^{2} \\
& (4: 2,2) \text { terms with P4 } \\
& +12 * \mathrm{P} 1 * \mathrm{P} 2 * \mathrm{P}^{2}+12 * \mathrm{P} 1 * \mathrm{P} 3 * \mathrm{P} 4^{2} \\
& +12 * \mathrm{P} 1 * \mathrm{P3}^{2} * \mathrm{P} 4 \\
& +12 * \mathrm{P} 2 * \mathrm{P} 3 * \mathrm{P} 4^{2} \quad(4: 1,1,2) \text { terms with P2 \& P4 } \\
& +12 * \mathrm{P}^{2} * \mathrm{P}^{2}{ }^{2} * \mathrm{P} 4 \\
& +12 * \mathrm{P}^{2}{ }^{2} \text { *P3*P4 } \\
& +24 * \text { P1*P2*P3*P4 }(4: 1,1,1,1) \text { term }
\end{aligned}
$$

where the format has been selected for clarity in insuring selection of all the criteria satisfying terms. The ( $4: 1,3$ ) terms $4 * P 1^{3} * P 4 \& 4 * P 2^{3} * P 4$ are not allowed [ $j 1 \leq 1 \& j 1+j 2 \leq 2$ criteria] and have been dropped. Likewise the $(4: 2,2)$ term $6 * P 1^{2} * P 4^{2}$ term has been dropped $[j 1 \leq 1$ criteria]. For the more complicated (4:1,1,2) set, first all the terms containing P1 \& P4 were selected then the remaining terms with P2 \& P4 but not P1 were selected. Several (4:1,1,2) terms were dropped for failure to meet criteria. As the problem becomes more complex, it is necessary to use a system to insure that all the terms satisfying the criteria are included.

For $N=5$ the combination rormula is

$$
\begin{aligned}
& \mathrm{FAP}=P 5^{5} \\
& +5 * \mathrm{P} 1 * \mathrm{P} 5^{4}+5 * \mathrm{P} 2 * \mathrm{P}^{4}+5 * \mathrm{P} 3 * \mathrm{P}^{4}+5 * \mathrm{P} 4 * \mathrm{P} 5^{4} \\
& +5 * P 4^{4} * P 5 \\
& +10 * P 2^{2} * \mathrm{P}^{3}+10 * \mathrm{P} 3^{2} * P 5^{3}+10 * \mathrm{P}^{2} * \mathrm{P}^{3} \\
& +10 * \mathrm{P}^{3} * \mathrm{P}^{2}{ }^{2}+10 * \mathrm{P} 4^{3} * \mathrm{P}^{2} \\
& +20 * \mathrm{P} 1 * \mathrm{P} 2 * \mathrm{P} 5^{3}+20 * \mathrm{P} 1 * \mathrm{P} 3 * \mathrm{P} 5^{3}+20 * \mathrm{P} 1 * \mathrm{P} 4 * \mathrm{P} 5^{3} \quad(5: 1,1,3) \mathrm{s} \text { with } \mathrm{P} 1 \\
& +20 * P 1 * \text { P }^{3} * \mathrm{P}_{5} \\
& +20 * \mathrm{P} 2 * \mathrm{P} 3 * \mathrm{PF}^{3}+20 * \mathrm{P} 2 * \mathrm{P} 4 * \mathrm{P} 5^{3} \\
& +20 * \mathrm{P} 2 * \mathrm{P} 4^{3} * \mathrm{P} 5 \\
& +20 * \mathrm{P} 3 * \mathrm{P} 4 * \text { P }^{3} \\
& +20 * \mathrm{P} 3 * \mathrm{P} 4^{3} * \mathrm{P} 5 \\
& +30 * \mathrm{P} 1 * \mathrm{P3}^{2} * \mathrm{PF}^{2}+30 * \mathrm{Pl} * \mathrm{P}^{2}{ }^{2} * \mathrm{P}^{2} \\
& +30 * \mathrm{P} 2 * \mathrm{P}^{2} * \mathrm{P5}^{2}+30 * \mathrm{P} 2 * \mathrm{P}^{2} * \mathrm{P}^{2} \\
& +30 * \mathrm{P}^{2} * \mathrm{P}^{2} * \mathrm{P5}^{2}+30 * \mathrm{P}^{2} * \mathrm{P} 4 * \mathrm{P}^{2} \\
& +30 * \mathrm{P}^{2} * \mathrm{P}^{2} * \mathrm{P} 5 \\
& +30 * \mathrm{P} 3 * \mathrm{P}_{4}{ }^{2} * \mathrm{P}^{2}{ }^{2} \\
& +30 * \mathrm{P}^{2} * \mathrm{P}^{2} * \mathrm{P}^{2} \\
& +30 * \mathrm{P}^{2} *{ }^{2} 4^{2} * \mathrm{P} 5 \\
& +60 * \mathrm{P} 1 * \mathrm{P} 2 * \mathrm{P} 3 * \mathrm{P}^{2}+60 * \mathrm{P} 1 * \mathrm{P} 2 * \mathrm{P} 4 * \mathrm{P} 5^{2}+60 * \mathrm{P} 1 * \mathrm{P} 3 * \mathrm{P} 4 * \mathrm{P}^{2}{ }^{2} \\
& +60 * \mathrm{P} 1 * \mathrm{P} 2 * \mathrm{P}^{2} * \mathrm{P} 5+60 * \mathrm{P} 1 * \mathrm{P} 3 * \mathrm{P} 4^{2} * \mathrm{P} 5 \\
& +60 * \mathrm{P} 1 * \mathrm{P}^{2} \text { *P4*P5 } \\
& +60 * \mathrm{P} 2 * \mathrm{P} 3 * \mathrm{P} 4 * \mathrm{P} 5^{2} \\
& +60 * \mathrm{P} 2 * \mathrm{P} 3 *{ }^{2} 4^{2} * \mathrm{P} 5 \\
& +60 * \mathrm{P} 2 * \mathrm{P}^{2}{ }^{2} * \mathrm{P} 4 * \mathrm{P} 5 \\
& +60 * 2^{\text {T}} * \mathrm{P} 3 * \mathrm{P} 4 * \mathrm{P} 5 \\
& +120 * \mathrm{P} 1 * \mathrm{P} 2 * \mathrm{P} 3 * \mathrm{P} 4 * \mathrm{P} 5 \mathrm{(6:1,1,1,1,1)} \mathrm{terw} \\
& \text { (5:5) term with P5 } \\
& \text { (5:1,4)s with P5 } \\
& \text { (5:2,3)s with P5 } \\
& \text { (5:1,1,3)s with Pl } \\
& \text { (5:1,1, 3)s with P2 } \\
& \text { (5:1,1:3)s with P3 } \\
& \text { \{5:1,2,2\}s with P1 } \\
& \text { (5:1,2,2)s with P2 } \\
& \text { (5:1,2,2)s with P3 } \\
& \text { (5:1,1,1,2)s with P1 } \\
& (5: 1,1,1,2) \mathrm{s} \text { with } \mathrm{P} 2 \\
& (6: 1,1,1,1,1) \text { terw }
\end{aligned}
$$

where terms not satisfying the criteria have been dropped.
This recipe for combining FAPs from a set of measurements has tacitly assumed that the probability distributions were continuous. The scheme directly assumed that a possible measurement value corresponding to all the FAP values in the set existed for each probability distribution of the set. However, the Poisson distribution is discrete rather than continuous. The direct assumption is exactly true for the Poisson case when the background count estimate is the same for each neasurement in the set. This would be true if the same sensor were sequentially used for the same counting period for each measurement in the set. Unfortunately, this is not our case. We will have to be willing to ignore the relatively sall error in the combined F.4P introduced by discrete count values.

### 3.4.3 Recipe Usins the Neighted Mean

An alternative method to estimate the FAP for the combined data get would use the weighted mean, $\langle X\rangle$, of the flux measurements and associated error in that weighted wean, $S_{x}$. If the collection of independent flux measurements can be considered noraally distributed, one can calculate the probability of measuring the value 〈 $X$ 〉 or higher from a distribution with zero mean and $\mathbb{S}_{\mathrm{z}}$ as the standard deviation. This probability ia obtained by as the probability of $x=\langle X\rangle / S_{y}$ or higher in a $N(0,1)$ table. A numerical approximation to this valid $0 \leq x<\infty$ with an error leas than $7.5 E-8$ is given ${ }^{\text {(a) }}$

$$
\begin{aligned}
& z(x)=\frac{1}{[2 * \pi]^{2}} * e^{-x^{2} / 2} \\
& t=1 /(1+0.23164 * x) \\
& F A P=Q(x)=Z(x) *\left[0.31938153 * t-0.356563782 * t^{2}\right. \\
& +1.781477937 * t^{3}-1.821255978 * t^{4} \\
& +1.330274429 * t^{5} \mathrm{~J}
\end{aligned}
$$

This numerical approximation allows ready calculation of the FAP associated with the weighted mean flux.

However, this method will overestimate the FAP since the error in the weighted wean, $S_{x}$; is larger than the similar error calculated under the null hypothesis of zero flux. The overestimate of the FAP will be greatest when the measurement is significantly above zero flux. One way to correct fer the over estimation is to use the weighted øean error that one would have if all the counts corresponded to background counts. The error estimate for the net. count was the square root of the sum of the raw count and the variance in the background estimate. This was transformed into the error estimate for the neutron flux associated with that count. Under the null hypothesis, the raw count would be the expected background count. The neutron flux errer estimate for individual measurements (under the null hypothesis) is the transformation of the square root of the sum of the expected background count and the variance in the background estiaate. One can then calculate an estimate of the error in the weighted mean flux corresponding to zero neutron flux.

[^3]The FAP calculated from the weighted average scheme will be larger than that calculated from the combined FAP scheme since there will generally be combinations of measurements capable of producing the same weighted average that will not satisfy the combined FAP criteria.

Note that one could do the same with the mean of an unweighted or standard average.

### 3.5 MINTMUM DETECTABLE LEVEL

To avoid confusion, care must be used to define what is meant by minimum detectable level, MDL. The minimum detectable flux will produce minimum detectable ${ }^{\S 4} \mathrm{Cu}$ activity in the copper samples being counted. Adding the average value of the count due to the minimum detectable ${ }^{64} \mathrm{Cu}$ activity will just meet the significance criteria of $\mathrm{FAP} \leq 0.001$ or whatever value is selected. If a measurement results in this minimum detectable flux, it will have associated with it an error estimate expressed in terms of the standard error. Now if one wishes to state that this detection implies that the flux was below a set limit with a given degree of confidence one must add some multiple of the standard error to the mean. This limit can be referred to as a less-than-value (LTV) or in the special case that the mean just satisfies the FAP requirement, this limit is referred to as the lower limit of detection (LLD)

As used here, the MDL would have a $50 \%$ detection probability since the mean of the distribution will satisfy the FAP criteria.

If one desires to be $95 \%$ sure that the flux is less than the ITV and the normal probability distribution is applicable, then the LTV is 1.645 times the standard error (se) above the MDL value, With these definitions one gets a continuous LTV as the measurement drops below meeting the FAP criteria. Mean values for measurements below the MDL are not statistically significant and should be expressed as being less than the LTV=MDL $+a *$ se where "a* is declared.

A lower limit of detection (LLD) corresponding to 4.66-sigma increase above a background mean is an acceptable method for calculating the lower limit of detection according to regulatory guide 4.16 section 3.2 (Dec 85 ). The claim is that a lower limit sample has a $95 \%$ detection probability. An activity with a mean 4.66-sigma above background has a $95 \%$ detection probability only when the threshold for detection is 3-sigma above the background mean. The 3 -sigma threshold is near the FAP=0.001 threshold (3.092wigma from a normal distribution).

The derivation of the regulatory guide requirement of an LLD $=4.66-s i g m a$ does not completely fit our data. The derivation assumes that the background estimate is known only to the same precision as the activity measurement. This would be the case if the only background count were for the same duration as the activity measuring count. We spent considerable time taking multiple
background counts so the background estimate is known to wuch greater precisien. Also as stated in the regulatory guide, the 4.66 -sigma requirement assumes that only a single measurement of the activity is made. Multiple measurements are not considered, Note four independent measurements of a sample with a background plus activity mean at the 3 -sigma threshold will have a $94 x\left(1-0.5^{4}\right)$ chance of detection (being above the 3-sigan threshold on at least one measurement), although a single measurement would have only a $50 \%$ chance of detection. Also the duration of the counting is not considered a parameter in the LLD derivation. Activity levels less than the 4.66-sigma LLD could be detected if one were willing to count longer. In the generalized sense, the regulatory guide is requiring that the true activity in a sample be less than a guaranteed value with $95 \%$ confidence.

For the case where a measurement can be easily made (considerable activity), one generally quotes a mean value (m) and standard error (se) for the activity level neasured, as required in section 5.2 of the regulatory guide. Assuming a normal distribution, the activity has a $95 \%$ probability of being below $₫+1.645 * s \mathrm{~s}$. The activity has a $99.9 \%$ probability of being below m+3.092*ge. With this in mind, the weighted mean, 〈X〉, and associated error, $\mathbb{S}_{\mathbf{x}}$, can also be used to estimate a guaranteed less than value, LTV.

$$
\begin{array}{ll}
\text { LTV }=\langle X\rangle+1.645 * S_{x} & {[95.0 x \text { sure it is less than LTV }]} \\
\text { LTV }=\langle X\rangle+3.092 * S_{x} & {[99.9 x \text { sure it is less than LTV] }}
\end{array}
$$

As a continuous extension, an estimate of the lowest statistically significant LTV is found when $\langle x\rangle=$ MDL. Note that the MDL wust be greater than zero since it is impossible to produce a negative ${ }^{64}$ Cu activity in the rods.

Since statistical and other errors have all been propagated into the individual error estimates, $s_{i}$, going into the weighted average, the error associated with the weighted mean, $S_{x}$, is the correct error estimate to use while finding the minimum detectable level of the weighted average neutron flux. In a manner similar to that used to calculate the significance of the weighted mean, the error, $s_{x}$, is simply wultiplied by the corresponding sigma level for the desired MDL of the flux. This yields MDL $=3.092 * S_{x}$, fconsistent with $\mathrm{FAP}=0.001$ and $\mathrm{DP}=0.5$ ). The corresponding LTV is 4.737 * $\mathrm{S}_{\mathrm{x}}$, which is $1.645 * S_{x}$ higher than the MDL.

For each independent measurement (count), we calculate the minimum detectable level [mall of flux given the decay time and count period. This flux level will change as the induced ${ }^{64} \mathrm{Cu}$ decays away and will depend on 1) the number of coupons counted at one time and 2) the length of the counting peried. The MDL will decrease inversely with the number of coupons counted at one time. The MDL would decrease inversely as the square root of the counting time if the ${ }^{54} \mathrm{Cu}$ decay during the counting time is not significant. The length of the counting period has two practical liwits. It is pointless to
c*unt for more than one half life since the lower signal-to-neise data in the second half life comprowises the better data in the first half life. Also several groups of coupons must be counted during the first half life, so the time during the first half life must be divided between several counts to obtain the activity levels in the various coupon groups.

The typical coincidence count rate for an empty sensor cave is $0.55 \mathrm{c} / \mathrm{m}$. For a typical count duration of 3000 seconds ( 50 minutes) using 6 coupons, the MDL neutron flux is $0.036 \mathrm{n} /\left\{\mathrm{a} * \mathrm{~cm}^{2}\right\}$ if the count started 2 hours after the activation ended. The corresponding MDL for a count of 6 coupons lasting one half life ( 12.7 hr ) is $0.011 \mathrm{n} /\left(\mathrm{s} * \mathrm{~cm}^{2}\right)$, which does not scale with the square root of time from the 50 -minute count $\left[0.009 \mathrm{n} /\left(\sec ^{*} \mathrm{~cm}^{2}\right)\right]$ due to ${ }^{4} \mathrm{Cu}$ decay during the counting period. If the minimum LTV or LLD is desired, wultiply by $4.737 / 3.092=1.532$ for typical flux levels of 0.055 and $0.017 \mathrm{n} /\left(\mathrm{s}^{*} \mathrm{~cm}^{2}\right)$ respectively. The weighted average flux of all the measurements for both sensor systems allow MDL levels to approach $0.007 \mathrm{n} /\left(\mathrm{s}^{*} \mathrm{~cm}^{2}\right)$ for a given string. This is reasonable since two simultaneous 12.7 -hour measurenents yould have an MDL of $0,011 / \frac{1}{2}$ or $0.008 \mathrm{n} /\left(\sec * \mathrm{~cm}^{2}\right)$ and typically the coupons were counted for 12 hours following removal from the OTSG. This $0.007 \mathrm{n} /\left(\mathrm{sec}^{*} \mathrm{~cm}^{2}\right)$ value corresponds to the value of the total background neutron flux levels over land at sea level. One must quickly point out that the flux measured by ${ }^{64}$ Cu activation is more of a thermal flux and the background cosaic-ray flux is not a thermal flux, but a harder flux containing a large percentage of fast neutrons. The thermal portion of the background cosmic-ray flux can be as little as $7 \%$ of the total flux in the absence of moderating materials in the immediate environment. With the boron loaded water in the OTSG, the thermal portion of the background neutron flux could be swall.

Table 3.4 lists minimum detectable fluxes for each of the two sensors used during the two measurements ( $A$ and $B$ OTSGa).

TABLE 3.4. Minimum Detectable Neutron Fluxes

Item	A-OTSG SENSOR-A	$\begin{aligned} & \text { A-OTSG } \\ & \text { SENSOR-B } \end{aligned}$	$\begin{aligned} & \text { B-OTSG } \\ & \text { SENSOR-A } \end{aligned}$	$\begin{aligned} & \text { B-OTSG } \\ & \text { SENSOR-B } \end{aligned}$	UNITS
Background rate	0.548	0.545	0.594	0.535	c/m
MINIMUM DETECTABLE FLUX [FAP $=0.001$, $\mathrm{DP}=0.5$ ]					
50 -minute count $\mathrm{t}=2$ hour	0.0360	0.0362	0.0373	0.0352	$\mathrm{n} /\left(\mathrm{s*cm} \mathrm{~cm}^{2}\right)$
12.7-hour count e t=2 hour	0.0113	0.0113	0.0118	0.0110	$\mathrm{n} /\left(\mathrm{s} * \mathrm{~cm}^{\text {x }}\right.$ )

If the background coincidence counting rate had corresponded to the 0,12 c/m obtained with more sophisticated coswic cancellation and increased shielding (i.e., the packard-5 system at PNL), it may have been possible to detect the thermal portion of the background neutron flux.

### 3.6 COMMTEATE

The neutron flux value is a more realistic and fundamental result from the copper coupon counting than kilograms of fuel. The conversion of copper activity to flux is relatively straightforward and not subject to modeling uncertainties. However, the conversion to kilograms of fuel in the OTSG is very much subject to modeling uncertainty: The neutron flux value is a useful intermediate step in the quest for the amount of fuel.

The calculations required to convert the raw coincidence count data into a neutron flux estimate with associated error and signif icance estimates were done with a BASIC program, FLUX4.BAS: The BASIC program, COMB.BAS, was used to construct combined measurement values from the individual flux measurements. The listings of these programs are provided as an appendix.

### 4.0 BACKGROUND MEASUREMENTS

### 4.1 INTRODUCTION

Two coincidence counting systems were used at GPU／TMI－2 to count ${ }^{64} \mathrm{Ou}$ activity following neutron irradiation in the OTSGs．The following is a tabulation of the background coincidence rates which were measured during the experiment．The background $⿴ 囗 十$ easurements have been divided into two sets 1 ）$A^{-}$ OTSG background measurements and 2）B－OTSG background weasurements．Some of the measurements from the time period between the A－OTSG and B－OTSG measure－ ments occur in both background data sets．The rationale for the separation is t．minimize the affect fany slight drift in background counting rate over time．Thus background measurements would not influence measurements a long time previously or following．

Some of the A－OTSG background rates were taken with an empty cave and some with 7 copper coupons，which were not activated in the OTSG．There is no statistical difference between the count rates for these two types of back－ ground measurements．The average rate for the 7 background copper coupons in the caves was 0.50 cpm for the $A$ sensor pair and 0.522 cpa for the $B$ sensor pair．This was slightly less than the average for the data set but within the error bars．One might reasonably expect a slightly higher background count with the copper coupons present due to ${ }^{64} \mathrm{Cu}$ induced by coswic－ray neutrons．

The count rates for events in the energy windows around the $511-\mathrm{keV}$ photopeak were also measured．For the A sensor the individual photopeak rates were typically nearly the same at about $A 1=46 \mathrm{cpm} \& A 2=46 \mathrm{cpm}$ yielding a chance coincidence background rate of 0.0043 cpm ．For the B sensor the indi－ vidual photopeak rates were typically $B 1=44$ cpa $\& B 2=112$ cpa yielding a chance coincidence background rate of 0.010 cpm ．These chance coincidence rates are well below the actual coincidence background rates of $0,55 \mathrm{cpa}$ ．Thus the background coincidence rate is dominated by real events which produce these coincidences．The physical sources of these coincidence counts include 1） cosmic－ray interactions clipping a corner of each crystal，2）cosmic－ray induced positrons，3）ringing pulses following huge cosmic－ray events，and 4） positron－emitting contamination in the sensor system．

The average background rate was calculated by two methods．The first combined all background counts into one large count and determined the average rate by dividing the total count by the duration．The error in the wean for this wethod is given by the square root of the count divided by the duration． The second method used each background count as an independent measurement and determined the mean and standard deviation of the collection of measurements， The standard error in the mean of this collection is given by the standard deviation divided by the square root of the number of samples．The first method provided a more accurate estimate of the mean since the duration of
each sample is correctly accounted for. The second method provided additional insight into any non-Poisson ₹ariations in the background due to systematic changes during the measurement period. These systematic changes may have been due to diurnal cycles in the cosmic-ray rate, drift in the Nal(Tl) gain with temperature, or drift in the 511-keV energy window. However, no evidence for such effects was seen.

### 4.2 BAGKGROLND DATA FOR A-GTSG MEASUREMENTS

Table 4.1 below lists the raw background measurements and the resulting estimates of the background rate for the first measurement set (A-OTSG). The background coincidence rate of $0.548 \mathrm{c} / \mathrm{m}$ for the $A$ sensor pair and $0.543 \mathrm{c} / \mathrm{m}$ for the $B$ sensor pair will be used for the A-OTSAmeasurements. As one can see, the two calculation methoda used to determine the background estimate yielded results which agree within acceptable limits. The agreement in the standard error in the means indicates that the background was well behaved and Poisson during the measurement period.

TABLE 4.1. Background Rates for OTSG-A Measurements

DATE	TIME	$\begin{aligned} & \text { DURATION } \\ & (\mathrm{sec}) \end{aligned}$	$\begin{aligned} & \text { COUNTS-A } \\ & \text { (cts) } \end{aligned}$	$\begin{aligned} & \text { A-COUNT } \\ & \text { RATE } \\ & \text { (c/m) } \end{aligned}$	$\begin{aligned} & \text { COUNTS-B } \\ & \text { (cts) } \end{aligned}$	$\begin{aligned} & \text { B-COUNT } \\ & \text { RATE } \\ & \text { (c/m) } \end{aligned}$	Comment
9-14-8B	0940	3,000	22	0.440	25	0.500	7 coupons
	1030	27,600	203	0.441	257	0.552	7 coupons
	2040	3,000	22	0.440	25	0.500	Empty cave
	2130	30,000	291	0.582	264	0.528	Empty cave
9-15-88	0907	3,000	32	0.640	28	0.560	Empty cave
	1001	3,000	35	0.700	29	0.580	Empty cave
9-16-88	0640	7,600	72	0.568	75	0.592	Empty cave
	0841	5,400	52	0.578	60	0.666	Empty cave
	1049	4,200	40	0.571	39	0.557	Empty cave
9-17-88	0800	16,000	154	0.578	169	0.634	Empty cave
	1230	15,100	135	0.536	155	0.616	Empty cave
	1655	12,100	93	0.461	103	0.511	Empty cave
	2025	14,000	138	0.591	129	0.553	Empty cave
9-18-88	0021	20,500	235	0.688	202	0.591	Empty cave
	0620	19,500	161	0.495	184	0.566	7 coupons
	1145	16,600	142	0.513	129	0.466	7 coupons
	1630	18,300	154	0.505	160	0.525	7 coupons
	2138	32,600	309	0.569	268	0.493	7 coupons
9-19-88	1045	3,000	28	0.560	28	0.560	Empty cave
	2240	31,800	310	0.585	293	0.553	Empty cave
9-20-88	1017	2,200	15	0.409	22	0.600	Empty cave
	2305	33,900	318	0.563	278	0.492	Empty cave
9-21-88	1030	9,600	90	0.563	91	0.569	Empty cave
	1315	15,000	146	0.584	136	0.544	Empty cave
	1730	16,600	139	0.502	164	0.593	Empty cave
	2210	33, 300	292	0.526	291	0.524	Empty cave
totals average standard standard		396,900	3628	14.188	3604	14.425	$\mathrm{n}=26$
			$0.548 \mathrm{c} / \mathrm{m}$	0.546	$0.545 \mathrm{c} / \mathrm{m}$	0.555	
	error			0.072		0.047	
	error	in mean	$0.009 \mathrm{c} / \mathrm{m}$	0.014	0.010 c/m	0.009	

### 4.3 BACKGROUND DATA FOR B-OTSG MEASUREMENTS

Table 4.2 below lists the raw background measurements and the resulting estimate of the background rate for the second measurement set (B-OTSG). The background coincidence rate of $0.594 \mathrm{c} / \mathrm{m}$ for the $A$ sensor pair and $0.535 \mathrm{c} / \mathrm{m}$ for the B sensor pair will be used for the B-OTSG measurements.

TABLE 4.2. Background Rates for OTSG-B Measurements

date	TIME	$\begin{gathered} \text { DURATION } \\ (\mathrm{sec}) \end{gathered}$	$\begin{aligned} & \text { COUNTS-A } \\ & \text { (cts) } \end{aligned}$	$\begin{aligned} & \text { A-COUNT } \\ & \text { RATE } \\ & (\mathrm{c} / \mathrm{m}) \end{aligned}$	$\begin{aligned} & \text { COUNTS-B } \\ & \text { (cts) } \end{aligned}$	$\begin{aligned} & \text { B-COUNT } \\ & \text { RATE } \\ & (\mathrm{c} / \mathrm{m}) \end{aligned}$	Comment
9-21-88	1030	9,600	90	0.563	91	0.560	Empty cave
	1315	15,000	146	0.584	136	0.544	Empty cave
	1730	16,600	139	0.502	164	0.593	Empty cave
	2210	33,300	292	0.526	291	0.524	Empty cave
9-22-88	0924	10,800	105	0.583	89	0.494	Empty cave
	1230	17,700	180	0.610	157	0.532	Empty cave
	1730	50,000	480	0.576	463	0.556	Empty cave
9-23-88	1244	10,800	112	0.622	118	0.656	Empty cave
9-24-88	0920	10,080	101	0.601	78	0.464	Empty cave
	1210	18,600	179	0.577	151	0.487	Empty cave
	1725	52,200	522	0.600	472	0.543	Empty cave
9-25-88	0800	21,120	240	0.682	167	0.474	Empty cave
	1400	60,000	638	0.638	547	0.547	Empty cave
9-26-88	0930	3,600	46	0.767	21	0.350	Empty cave
	1036	3,900	34	0.523	29	0.446	Empty cave
	1140	3,600	34	0.567	34	0.567	Empty cave
	1245	3,600	29	0.483	31	0.517	Empty cave
	1350	4,300	44	0.614	34	0.474	Empty cave
totals average standard standard		344,800	3411	10.618	3073	9.328	
			. $594 \mathrm{t} / \mathrm{m}$	0.590	. $635 \mathrm{c} / \mathrm{m}$	0.518	$n=1 B$
	error			0.066		0.066	
	error	in mean	. $010 \mathrm{c} / \mathrm{m}$	0.016	$.010 \mathrm{c} / \mathrm{m}$	0.016	

### 5.0 COPPER ACTIVATION MEASUREMENTS

### 5.1 INTRODUCTION

Two coincidence counting systems were used at GPU/TMI-2 to count ${ }^{64} \mathrm{Cu}$ activity following exposure of copper coupons in the OTSGs. This chapter contains a tabulation of the coincidence measurements.

The copper coupons were $1 / 4$-inch diameter rods, 4 inches long with the ends machined to a convex surface to allow the string to bend slightly. Each coupon weighed 28.60 grans and was labeled with an alphabetic character identifying the string followed by a sequence number (1 to 18). Eighteen PNL supplied copper coupons were placed in a $1 / 2$-inch diameter polypropylene tube for emplacement in the bottom of the OTSG by insertion from the manway at the top of the OTSG through a steam tube. The coupons were loaded sequentially in the polypropylene tube with coupon \#1 at the bullet end (front) of the string and coupon \#18 at the rear of the string. The 18 copper coupons were preceded and followed in the string by small GM counters to measure the local gamma-ray dose as the string was inserted. Additional copper rods were used as ballast behind the rear GM counter to insure that the string would not float up from the bottom surface of the OTSG bowl or J-leg.

The coincidence measurements are labeled by a three character-identifier. The first character is the character used to in labeling the string (A to K), the second character identifies the sensor ( $A$ or $B$ ) used for that measurement, and the third character is the sequence number of the measurement. Both $A$ and $B$ sensor systems were used for each measurement. For example, measurements JAl and JB1 would be simultaneous and of the same duration.

### 5.2 GENERAL TABLE EXPLANATION

The coincidence count data is presented in a single table for each string. This section explains the meanings of the table entries.

### 5.2.1 Column Headings

The first column headed "LABEL" contains the measurement label (string, sensor, and measurement sequence number). The second column identifies the coupons used to make that measurement (string and coupon number).

The column headed "BKG" contains the expected background count for that measurement. This value is the average background rate times the duration of the count. The column headed "CNT" contains the actual total number of coincidence counts for that measurement. These two columns contain the basic
observations \{duration of count and actual count). The expected background count is listed rather than the duration to allow easy visual recognition that a count was or wasn't above the expected background and by how much.

The column headed "N-FLUX" contains the estimated neutron flux in the region of the coupons while they were in the OTSG. The estimated flux would produce the necessary ${ }^{64} \mathrm{Cu}$ activity at the time of the measurement to yield the actual count for that measurement. The column headed "NF-ERR" contains the standard error in the estimated neutron flux ( $N-F L U X$ ). The column headed " ${ }^{2}$-ERR" contains the N-FLUX standard error estimate expressed as a percentage. These columns contain the basic results of the measurements.

The column headed "FAP" contains the statistical significance of the measurement. The column headed "MDL-FLX" contains the minimum detectable flux corresponding to satisfying the $\mathrm{FAP}=0.001$ criteria with a $50 \%$ detection probability. To convert the MDL-FLUX into a less-than-value (LTV), which is also referred to as a lower limit of detection (LLD) multiply by 4.737/3.092 or 1.532. To convert a significant measurement ( $N-F L U X$ ) MDL-FLX) into a less-than-value (LTV), add 1.645 times the NF-ERR value te the $N-F L U X$ value. These LTVs have a $95 \%$ probability of being greater than the actual mean value of the neutron flux. The column headed " 2 F -ERR" contains the standard error estimate in the $\mathbb{N}$-FLUX if only background counts occurred. The $2 F-E R R$ is used to find the MDL. These columen contain statistically useful information.

### 3.2.2 Table Organization

The counts of the same coupons are grouped together and offset by a blank line, These counts of the same coupons are combined by the various averaging schemes and the results listed below the independent counts. At the end of each table is the average of all the measurements on the string coupons.

The individual measurements which where significant at $F A P=0.001$ and $\mathrm{DP}=0.5$ have been highlighted by bold type in these tables.

The "Data Set Title" identifies the location of the string during the measurement using the standard TMI labels. The "File" identifies the computer data file containing the data.

### 5.2.3 Combined Results

The individual measurements are combined primarily by the weighted averaging scheme. The weighted average is the averaging scheme commonly used to combine data of unequal precision. However, other schemes are also listed in these tables to show that the results of the weighted averaging scheme are reasonable. Since it is generally easy to become confused by statistical techniques and then to have no confidence in the results, every effort has
been made to show that the results of combining the many independent measurements are reasonable.

Since each coupon sees a neutron flux produced in a very limited region surrounding it, this combined average can be viewed as a spatial averaging of the flux in the J-leg or bowl. In the conversion to a fuel estimate the average flux will be multiplied by the debris area, which is exactly equivalent to determining a flux and then a fuel estimate for each coupon area and summing up the fuel estimates. The difference is that the minimum detection level for the total string is far less than that for each individual coupon.

The entries on the "Weighted Average" line are 1) N-FLUX = the weighted average of the individual neutron flux estimates in the group, 2) $N F-E R R=$ the error estimate associated with the weighted average flux estimate, 3 ) $x$-ERR $=$ error estimate in percentage, 4) FAP = the false alarm probability calculated from a normal distribution $N(0,1)$ using the mean [ $N$-FLUX] divided by the error estimate [NF-ERR] as the deviation from zero, and 5) MDL-FLUX = the minimum detectable flux which is 3.092 times the error estimate [NF-ERR]. The second line of weighted average information titled "using Wtd $2 F-E R R$ " contains the FAP and MDL values obtained using the ZF-ERR value as the standard deviation rather than the NF-ERR value. The $2 F-E R R$ value is more correct since it is based on the null hypothesis of no activity.

The "Normal Average" line is included to double check that the weighted average line is reasonable. The entries are 1) $N$-FLUX $=$ mean of the independent $N$-FLUX values and 2) $N F-E R R=$ the standard error of that mean calculated from the standard deviation of the set of independent flux values. This standard error of the mean can be smaller than the standard error in the weighted average if the measurements are closely grouped.

The "Long Count" line combines the independent counts into one long count. The entries included 1) BKG = the expected background count and 2) CNT $=$ the count for the long combined count. It is not possible to calculate a flux estimate from the long count to compare to the correctly calculated weighted mean estimate due to the ${ }^{64} \mathrm{Cu}$ decay during the measurement period. However, it is possible to calculate a percent error and FAP from the long count, which serve to check the values found with the weighted average scheme. The excellent agreement of the "Long Count" and "Weighted Average" $x$-ERR values inspires confidence that the weighted average estimates are very reasonable combinations of the individual measurements.

The "Combined FAP" is the probability of obtaining another set of independent measurements with the same-or-lower FAP values from coupons with the same ${ }^{64} \mathrm{Cu}$ activity. The combined FAP limits the significance of the set and serves as a lower limit for the weighted average FAP. A value for the combined FAP greater than 0.001 indicates that the measurement set can not satisfy the significance criteria and no statistical scheme could produce a significant non-zero estimate of the neutron flux from that data.

### 3.3 DTA

This section contains the experimental data (counts) and the results of the data reduction (neutron flux).

The bullet end of the J-string (coupons J01-J06) definitely saw a statistically significant neutron flux. One of the individual measurements was statistically significant. This region corresponded to the highest gammaray dose reading on the small $G M$ sensors. The weighted mean neutron flux seen by the forward third of the string was $0.038(G) \mathrm{n} /\left(\mathrm{sec}^{*} \mathrm{~cm}^{2}\right)$. Note the error bars for the two individual measurements overlap the error bars for the weighted average showing statistical agreement. The LTV for the weighted average is $0.053 \mathrm{n} /\left(\mathrm{sec}^{*} \mathrm{~cm}^{2}\right)$.

The JB4 measurement at $0.062(16)$ is higher than the LTV since there is a 5\% chance that the mean of the neutron flux distribution would exceed the LTV and a higher probability that a single measurement would exceed that value. One can not neglect the lower count rate during the longer JB8 measurement and claim that the JB4 eeasurement corresponds to the correct mean. Although the JB4 measurement is more significant in that it is less likely to be due to a fluctuation within the background distribution, it is less precise in that it has a greater error bar.

Late in the measurement cycle, an attempt was made to localize the ${ }^{84} \mathrm{Cu}$ activity in less than the 6 -coupon group. It appears that the neutron flux in the region of coupons J01-J03 was greater than in the region of J04-J06* Since the ${ }^{64} \mathrm{Cu}$ had decayed significantly when these measurements were made and the ${ }^{64} \mathrm{Cu}$ activity in the 3 -coupon group would be approximately half that in a 6-coupon group, it is reasonable that a significant individual count was not obtained.

The remaining two-thirds of the string saw a neutron flux of less than a minimum detectable level, based upon the results of the 6 -coupon groups. The neutron flux corresponding to J07-J12 was less than LLD=0.023 n/(sec*cax ). The neutron flux corresponding to $\mathrm{J} 13-\mathrm{J} 18$ was less than LLD $=0.020 \mathrm{n} /\left(\mathrm{sec} \mathrm{cm}^{2}\right)$. The $G M$ dose rate over this back two-thirds of the string was about $1 / 5$ th of that in the first third. If the neutron flux follows the gamma-ray dose, one would have expected a neutron flux on the order of $0.007 \mathrm{n} /\left(\mathrm{sec} * \mathrm{~cm}^{2}\right)$. This would be below the MDL and thus no detectable neutron flux could be expected in the rear two-thirds.

TABCE 5.1. J-String Measurements in the J-leg, A-OTSG/RCP-2A
Data Set Title: A-OTSG/RCP-2A
File: A:J.DAT


An extra 7-coupon group was counted for this $\mathrm{J}-\mathrm{leg}(\mathrm{J} 19-\mathrm{J} 25)$, This group was farther back from the bullet end than the other 3 groups and behind the rear $G$ counter. These coupons saw a neutron flux less than LLD=0.024 n/(sectcm ${ }^{2}$ ).

Although the weighted mean flux estimates for the three rear groups were all below the MDC flux for the groups, the values were remarkably similar and within the error estimates for the weighted means.

When the entire set of measurements is combined by a weighted average to estimate the average flux in the $2 \mathrm{~A} / \mathrm{J}-\mathrm{leg}$; the estimate is $0.009(3)$ $\mathrm{n} /\left(\mathrm{sec} \mathrm{c}_{\mathrm{C}} \mathrm{m}^{2}\right)$. This value is larger than the corresponding MDL value of 0.007 $n /\left(s e c * \mathrm{~cm}^{2}\right)$. The LTV corresponding to this weighted average of the J-string is $0.014 \mathrm{n} /\left(\mathrm{sec}^{*} \mathrm{~cm}^{2}\right)$. Combining the data from all the coupon measurements is reasonable since the various coupon locations result is a spatial average of the flux in the J-leg. The normal average of the all the measurements is $0.014(4)$, which is not much higher and is in statistical agreement [overlapping error bars) with the weighted average. This lends credence to the weighted average value. The other viable alternative to determine a more conservative LTV for overall average flux in the J-leg is to average the LTV for the rour groups to obtain $0.030 \mathrm{n} /\left(\mathrm{sec}^{*} \mathrm{~cm}^{2}\right)$. However, this alternative scheme does nut take into account the added precision available to the weighted average scheme and statistical practice justifies using the lower weighted average value.

TABLE 5.2. E-String Measurements in the J-leg, A-OTSG/RCP-1A
Data Set Title: A-OTSG/RCP-1A
File: A:E.DAT


The weighted average neutron flux in the forward third of string $E$ (E01E06) was $0.019(5) \mathrm{n} /\left(\sec \mathrm{cm}^{2}\right)$ and is statistically significant. Although none of the four independent counts of the forward third was individually significant ( $F A P=0.001$ ), the combined set of four measurements was statistically significant no matter how the significance is calculated. The normal average produced a lower error estimate and FAP than the weighted average since the individual flux measures closely agree. The LTV for the weighted average is $0.027 \mathrm{n} /\left(\sec ^{*} \mathrm{~cm}^{2}\right)$. Since a higher flux level was expected in the $1 \mathrm{~A} / \mathrm{J}-\mathrm{leg}$ than in the 2A/J-leg, an initial effort was made to use 3-coupon groups. The

3-coupon groups did not produce individually significant counts; but gave some indication that coupons E04-E06 had more activity than E01-E03. This observation was in agreement with the in-situ GM measurements.

There was one individually significant measurement in the central portion of the E-string (E07-E12) and one marginally significant measurement. The weighted average neutron flux was $0.016(5) n /\left(\sec * \mathrm{~cm}^{2}\right)$. The weighted average flux was lower than the forward third since one of the counts was lower than background. Statistically there are no grounds for discarding that one count since it is within reasonable limits of the weighted mean. This region did not correspond to the highest gamma-ray dose reading on the small GM sensors. In fact the actual section corresponded to the lowest gamma-ray dose. The LTV for the weighted average is $0.025 \mathrm{n} /\left(\mathrm{sec}^{\ddagger} \mathrm{cm}^{2}\right)$.

The neutron flux was lowest in the rear third of the E-string (E13-E18). The weighted average flux was $0.013(5) \mathrm{n} /\left(\mathrm{sec}^{*} \mathrm{~cm}^{2}\right)$. Although the corresponding weighted average $F A P=0.0024$ calculated with the $N F-E R R$ value was not quite 0.001 significant, the $F A P=0.0004$ is significant when calculated with the $2 F-$ ERR value under the null hypothesis. The LTV for the weighted average is $0.021 \mathrm{n} /\left(\sec ^{\ddagger} \mathrm{cm}^{2}\right)$ which is not much different than the $0.022 \mathrm{n} /\left(\mathrm{sec}^{*} \mathrm{~cm}^{2}\right)$ LLD based on the NF-ERR. One should note that the combined FAP was significant. For agreement with the $G M$ measurements, the rear third should have had more ${ }^{64} \mathrm{Cu}$ activity than the central third.

Since the weighted average flux estimates for each region are relatively close in value, one can easily feel comfortable using a spatial average for the entire J-leg. The weighted average for the set of measurements in the $1 \mathrm{~A} / \mathrm{J}$-leg is $0.016(3) \mathrm{n} /\left(\mathrm{sec}^{*} \mathrm{~cm}^{2}\right)$, which is in agreement with the weighted mean values for each of the three regions. The weighted average is statistically significant and can be accepted. The LTV for the weighted average is 0.020 $n /\left(\sec ^{*} \mathrm{~cm}^{2}\right)$.

The weighted average for the $1 \mathrm{~A} / \mathrm{J}-\mathrm{leg}(0.016)$ was higher than the weighted average for the $2 \mathrm{~A} / \mathrm{J}-\mathrm{leg}(0.009)$. This is consistent with expectation and the greater significance of aeasurements in the $1 A / J-l e g$.

TABLE 5.3. H-String Measurements in the Bowl of A-OTSG
Data Set Title: A-OTSG/BOWL 2W QUADRANT
File: A:H.DAT


TABLE 5.4. G-String Measurements in the Bowl of A-0TSG
Data Set Title: A-OTSG/BOWL-ZY QUADRANT File: A:G.DAT


There was no indication of ${ }^{64}$ Cu activity in any of the A/BOWL coupons for either string ( $H$ or G). None of the combined FAP values for the various coupon groups are significant at even the 0.01 level, which implies that no statistical combinations could provide a significant flux estimate other than zero. The weighted averages for both complete strings (H at 0.000\{2) $n /\left(\sec * \mathrm{~cm}^{2}\right)$ and $G$ at $\left.0.002(2) \mathrm{n} /\left(\sec ^{*} \mathrm{~cm}^{2}\right)\right]$ are consistent with zero and less than the corresponding MDL values $\left[0.007 \mathrm{n} /\left(\mathrm{sec}^{*} \mathrm{~cm}^{2}\right)\right.$ using NF-ERR or 0.004 using $2 F-E R R$ ]. The average neutron flux in the bowl is less than the LLD $=0.011 \mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}$ using $\mathrm{NF}-$ ERR or $0.006 \mathrm{n} /\left(\mathrm{sec}^{*} \mathrm{~cm}^{2}\right)$ using $2 F-E R R$.

None of the individual measurements was significant at even a marginal FAP level. Note, however, that out of the 20 individual A/BOWL measurements, one was significant at the $1 / 20$ level which shows 1 ) the FAPs are accurate and 2) there was really nothing to see.

TABLE 5.5. F-String Measurements in the J-leg, B-OTSG/RCP-2B
Data Set Title: B-OTSG/RCP-2B
File: A:F.DAT


TABLE 5.5 con't. F-String Measurements in the J -leg, B-OTSG/RCP-2B Data Set Title: B-OTSG/RCP-2B File: A:F.DAT

LABEL COUPONS	BKG	CNT	$\begin{gathered} \mathrm{N}-\mathrm{FLUX} \\ \mathrm{n} / \mathrm{s} / \mathrm{cm}^{2} \end{gathered}$	$\begin{aligned} & \text { NF-ERR } \\ & \mathrm{n} / \mathrm{s} / \mathrm{cm}^{2} \end{aligned}$	z-ERR	FAP	$\begin{aligned} & \text { MDL-FLX } \\ & \mathrm{n} / \mathrm{s} / \mathrm{cm}^{2} \end{aligned}$	$\begin{gathered} \text { 2F-ERR } \\ \mathrm{n} / \mathrm{s} / \mathrm{cm}^{2} \end{gathered}$
FA1 F03-F09	29.70	38	0.0149	0.0111	75\%	0.080148336	0.0346	0.0099
FB1 P10-F16	26.75	47	0.0407	0.0139	348	0.000248867	0.0367	0.0105
FA6x P13-F18	40.59	69	0.0711	0.0213	30\%	0.000030612	0.0561	0.0162
FB6x P07-F12	36.56	63	0.0660	0.0203	31\%	0.000044786	0.0535	0.0153
Wtd Ave for string using Wtd 2F-ERR Norm Ave for string			0.0242	0.0033	14\%	0.000000000	0.0101	0.0010
						0.000000000	0.0032	
			0.0209	0.0050	24\%	0.000015559	0.0155	

We were certainly able to detect a measurable neutron flux in the $2 \mathrm{~B} / \mathrm{J}-$ leg. Four of the individual measurements meet the FAP $=0.001$ significance criteria.

The flux measurements in the front third of the string [F01-F06] is significant for three of the four measures of significance listed in the table when three successive over background measurements are combined. The weighted average flux estimate is $0.019(7) n /\left(s e c * C^{2}\right)$ and the corresponding LTV is $0.030 \mathrm{n} /\left(\mathrm{sec}^{*} \mathrm{~cm}^{2}\right)$. The NF-ERR based MDL-FLX could also be used to determine a LLD of $0.033 \mathrm{n} /\left(\mathrm{sec}^{*} \mathrm{~cm}^{2}\right)$ if the significance based on the $2 F-E R R$ is not acceptable.

The middle third of the string [F07-F12] does have a measurable neutron flux. A weighted average neutron flux was $0.023(6) \mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}$ with a corresponding LTV of $0.033 \mathrm{n} /\left(\mathrm{sec}^{*} \mathrm{~cm}^{2}\right)$. The FB6 measurement is statistically significant by itself. The FB6x measurement, listed at the end of the table, corresponds to the count halfway through the 2 -hour FB6 measurement. Therefore, these two measurements are not statistically independent. The FB6x measurement is the most statistically significant measurement of the string. The " $x$ " measurements were not included in the weighted average of the set.

The rear third of the string [F13-F18] also has a measurable neutron flux of $0.032(6) \mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}$. The LTV for the weighted average is $0.041 \mathrm{n} /\left(\mathrm{sec} * \mathrm{~cm}^{2}\right)$. The FA6x measurement also corresponds to the count half way through the 2 -hour FA6 measurement. The rear third was slightly more active than the middle third when looking at the measurements as a group. Note that counts FA7 and FB8 seem to indicate that most of the ${ }^{64}$ Cu activity was in coupons F13-F15 rather than in F16-F18, since coupons F16-F18 produced lower than background counts in FB7 and FB8. Although not statistically significant, the flux estimates for coupons F16-F18 agreed reasonably well with the activity estimate in the rear third.

The count FB1 [F10-F16] was also individually significant and supports the significant activity in the rear two-thirds of the string.

Taken as a whole the weighted average neutron fax in the $2 \mathrm{~B} / \mathrm{J}-\mathrm{leg}$ was $0.024(3) \mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}$. This is well above the corresponding minimum detectable flux level and is statistically very significant. The LTV for the weighted average is $0.030 \mathrm{n} /\left(\sec * \mathrm{~cm}^{2}\right)$. Again the measurements in all three regions are relatively close in value and support using an average over the entire J-leg.

LABLE 5.6. I-String Measurements in the J-leg, B-OTSG/RGP-1B
Data Set Title: B-OTSG/RCP-LB File: A:I.DAT


There appears to be only a minimal neutron flux present in the $1 \mathrm{~B} / \mathrm{J}-\mathrm{leg}$. None of the individual measurements was significantly different from background in a statistical sense. The collection of measurements taken as a group can not be made statistically significant. The weighted average flux in the J-leg is $0.002(3)$ which is consistent with zero and is not a statistically significant increase from zero. It is also less than the corresponding MDL values [ $0.010 \mathrm{n} /\left(\mathrm{sec} \mathrm{cm}^{2}\right)$ using NF-ERR or 0.003 using ZF-ERR]. Therefore, the average neutron flux in this J-leg is less than the $\mathrm{LLD}=0.016 \mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}$ using NF-ERR or $0.005 \mathrm{n} /\left(\mathrm{sec}^{*} \mathrm{~cm}^{2}\right)$ using $2 F-$ ERR. Based on the $101-106$ combined FAP, there appears to be a slight ${ }^{64} \mathrm{Cu}$ activity in the forward third of the string, which makes the LLD calculated with NF-ERR higher than that calculated with 2F-ERR.

The lack of neutron flux in this J-leg is a somewhat unexpected result, since flux in the 2B/J-leg was considerably larger.

TABLE 5.7. C-String Measurements in Bowl of B-OTSG
Data Set Title: B-OTSG/BOWL ZW QUADRANT
File: A:C.DAT


## TABLE 5.7 con't. C-String Measurements in Bowl of B-OTSG

Data Set Title: B-OTSG/BOWL $2 W$ guadrant File: A:C.DAT


There appears to be only a minimal neutron flux present in the bowl of the B-OTSG. None of the individual measurements was gignificantly different than zero. The collection taken as a whole is not statistically significant. The weighted average flux in the bowl is $-0.001\{2\}$, which is consistent with zero and not significant. It is also less than the corresponding MDL values [ $0.006 \mathrm{n} /\left(\sec ^{*} \mathrm{Cm}^{2}\right)$ using NF-ERR or 0.003 using 2F-ERR], The average neutron flux in the bowl is less than the LLD $=0.010 \mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}$ using NF-ERR or 0.004 n/(sec*em ${ }^{\text {2 }}$ ) using $2 F-E R R$.

### 5.4 SUMARY

A summary of the neutron flux measurements in the steam generators appears in Table 5.8. These values are less than the preliminary neutron flux estimates, which used a lower sensor efficiency value and were not based on the weighted means.

The weighted average values for each area (J-leg or bowl) should be used since these contain the most experimental information. Additionally the counting errors have been properly propagated for these estimates. The weighted values of all the independent measurements in each string are highlighted in bold print. The flux estinates for subregions in these areas are less precise but are included where significant to provide insight as to relative magnitudes of the flux. The higher flux estimates in these subregions should not be used to increase the amount of neutron flux in the weighted average values.

In Table 5.8, the column labeled "LTV" is a less~than-value where the mean of the neutron flux has a 95\% chance of being below that value and only a 5\% chance of being above it. The column labeled "FAP" contains the probability that no neutron flux was observed and any net count can be explained by statistical variations in background only.

The number of measurements made for each estimate is included in the table. Some of the measurements were for longer duration than others in an attempt to obtain better counting statistics. Fewer measurements were aade on the G-string; but all were for longer duration since the activity was expected to be low.

Note that the LTV approaches the $0.007 \mathrm{n} /\left(\mathrm{sec}^{\boldsymbol{c}} \mathrm{Cm}{ }^{2}\right)$ background neutron flux over land value. However, one must remember that the flux measured was the thermal capture component of the total flux. The detection system was not able to statistically distinguish counts using rods with ${ }^{64} \mathrm{Cu}$ activity induced by the cosmic background neutron flux from counts with no rods in the detector system. The thermal component of the background neutron flux is less than $1 / 4$ the total background neutron flux, so the experimentally observed MDL was not limited by exposure of the coupons to background neutron flux after removal from the OTSGs. Also the caleulated MDL value for two simultaneous 12 hour
 limits sie reasonable.

TABLE 5.R. Summary for OTSG Measurements


In the bowls and the $1 B / J$-leg where a significant non-zero estimate of the neutron flux was not obtained, no additional measurements following our last measurements would have enabled us to make a significant estimate, since the combined FAP values were high and the ${ }^{64} \mathrm{Cu}$ activity was decaying away. Likewise, no different arrangement of the measurements during the time we counted coupons would have enabled us to make a significant estimate. The high FAP associated with the $H$ and $C$ strings indicates that a neutron flux measuring gyste would have to be at least a factor of 20 more sensitive than the one used to make a statistically significant measurement.

### 6.0 RESIDUAL FUEL ESTIMATES

### 6.1 INTRODUCTION

This chapter outlines several calculation models that facilitate estimating the quantity of residual fuel in the OTSG sections. The estimated fuel weight is based on the neutron flux, $\Phi$, measured by copper coupon activation measurements. There are several important parameters for obtaining an accurate estimate of the quantity of fuel in the debris.

More than one model will be presented to show the sensitivity of fuel estimates to either the parameter values or the calculation model used. The goal is to find a calculation scheme that is relatively independent of the unknown parameters. The several possible models can be useful in setting upper and lower limits on the amount of fuel present. Some relatively simple models are examined to provide insight into the problem. Often a simple calculation can provide a good deal of reasonably accurate information.

Two generic models exist 1) neutron production models and 2) neutron capture models.

A neutron production model examines the expected neutron flux from a diffuse volume source when assumptions are made about the distribution of the source. The source parameters needed for this model include 1) density of the debris, 2) depth of the debris, 3) area covered by debris, 4) fraction of fuel in the debris, and 5) total amount of debris. These parameters are not well known, but an estimate of the values can be constructed from the video examination accompanying each string emplacement.

A neutron capture model ignores the details of the source distribution but estimates the neutron source strength based on knowing where the neutrons are captured or leave the system. The parameters needed for this model are the attenuation lengths of fission neutrons in both the borated water and the steel walls. In most cases one would start with the neutron production model, but in this case, most of the neutrons will be captured in known materials distributed in a known manner. Therefore neutron capture models will be addressed first.

A third modeling scheme would use complex computer codes for neutron transport to provide a an accurate flux/fuel conversion. The drawbacks of a transport code are that one needs to input specific geometry and can not easily see the affects of approximations and changes in various parameter values. To obtain an accurate result with a Monte Carlo transport code, a very large number of neutrons must be tracked to produce a statistically significant number of captures in the relatively small copper coupon.

### 6.2 GENERAL INFORMATION

This section will provide reference data required by any physical model of the debris in the OTSG.

### 6.2.1 Geometry

The J-leg sections containing debris are nominally 6-foot long, 28 -inch diameter pipes with a 2 -inch thick steel wall. A 6 -foot ( 72 inch $=182.88 \mathrm{~cm}$ ) length is selected as the length seen by the eighteen 4 -inch long copper coupons. The inner diameter of each J-leg is 28.791 inches ( 73.1 .29 cm ) and the outer diameter is 33.5 inches ( 85.09 cm ). The wall thickness is 2.625 inches ( 6.67 cm ) with the inner 0.375 inches ( 0.95 cm ) a 304 stainless steel cladding and the outer 2.25 inches ( 5.72 cm ) carbon steel. The internal volume of the J-leg is filled with water with a boron concentration of 5720 ppm by weight.

The internal volume of a $73.129-\mathrm{cm}$ diameter, $182.88-\mathrm{cm}$ long cylinder is $v=\pi * r^{2} * L=7.681 E 5 \mathrm{~cm}^{3}$. The internal volume of a $85.09-\mathrm{cm}$ diameter, 182.88 m cm long cylinder is $1.040 \mathrm{E} 6 \mathrm{~cm}^{3}$. The voluse of the 6 -foot section of pipe wall is $2.718 E 5 \mathrm{~cm}^{3}$. The inner surface area of the pipe is $A=2 * \pi_{r} r^{*}{ }^{2}=$ $4.202 E 4 \mathrm{~cm}^{2}$. We will assume that debris is located only on the bottom quarter of the pipe which means that the debris is distributed across $1.1 E 4 \mathrm{~cm}^{2}$. If a quantitative evaluation of the video records in the $J$-legs supports a dif ferent debris area, all the estimates will scale linearly to the new area.

The OTSG bowl sections containing debris are nominally 10 -foot diameter hemispheres, with a 6 -inch thick steel wall. The hemisphere inner radius is 59.34 inches ( $150,7 \mathrm{~cm}$ ) and the outer radius is 66.03 inches ( 167.7 cm ) and the wall thickness is 6.69 inches ( 16.99 cm ). As in the J-legs, there is 0,375 inches ( 0.95 cm ) of 304 stainless steel cladding on 6.31 inches $\{16.03$ cm) of carbon steel.

The surface area of a hemisphere of radius 150.7 cm is $A=2 * \pi^{*} r^{2}=$ $1.427 \mathrm{E} 5 \mathrm{~cm}^{2}$. If the debris is limited to a portion sampled by the 6 -foot long string, the half-angle of the spherical section is 0.6 radians $=34.4$ degrees. The surface area within the cone subtended by the half-angle $\theta$ is $A=$ $2 *!r^{2} *[1-\cos (\theta)]=2.492 E 4 \mathrm{~cm}^{2}$.

The yideo scans perhaps indicate that the area covered by debris is less than the above areas. However, without the quantitative photo interpertation, a smaller area estimate is not reasonably available. All the fuel estimates in this section scale linearly with the debris area and should be adjusted to more realistic area estimates should they become available.

### 6.2.2 Source Strength

The source strength of the TMI-2 fuel is reported by B. R. Brosey ${ }^{(a)}$ to be 190 neutrons/second per kilogram of uranium dioxide. We will use this as the neutron source strength.

## 6.2,3 Number Densities and Waterial Compositions

Nearly all models will require the number density of the various materials found in the OTSGs. The number density values are listed in Table 6.1 below. To avoid later confusion, " $N$ " is the weight based number density in atoms/gram, " $\mathrm{N}_{\mathrm{c}}$ " is the volume based number density in atoms/cm", and " N " is the total number of atoms of a given material in the problem. The weight based atomic number density, $N_{B}$, of a element equals Avogadro's number, 6.02243 E 2 a number/mole (\#/mole) divided by the gram atomic weight (g/mole). For mixtures of elements in a material (alloys or compounds) the atomic number density of the element can be oultiplied by the percent by weight of that element in the mixture. To obtain the volume based number density, $N_{c}\left(\# / \mathrm{cm}^{3}\right)$, multiply $\mathrm{N}_{\mathrm{g}}\left(\mathrm{H}_{\mathrm{H}} / \mathrm{g}\right)$ by the specific gravity $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$.

The water in the OTSG contains 5720 ppo boron. In Table 6.1, the number of boron atoms in 5.72 mg of boron has been added to the number of hydrogen and oxygen atoms in a gram of water (the added weight of the boric acid is neglected). The isotopic abundance of ${ }^{63} \mathrm{Cu}$ atoms is $69.2 \%$. The compositions of carbon steel and 304 stainless are selected as the averages of the ranges given for each element.

[^4]TARLE 6.1. Number Density of Varioua Materials in OTSG

Material	Molecularitt or Atomicht	$\begin{aligned} & N_{\mathrm{g}} \text { element } \\ & \text { or molecule } \\ & \text { \$/g } \end{aligned}$	$N_{\text {g }}$ in mix (incl wit) atoms/g	Specific gravity 8/cm ${ }^{3}$	$\begin{aligned} & \mathrm{N}_{\mathrm{c}} \\ & \text { atoms } / \mathrm{cm}^{3} \end{aligned}$
Boron	10.81	5.5708 E 22		2.34	$1.3036 E 23$
Water $\mathrm{H}_{2} \mathrm{O}$	18.01528	3.3427 E 22		1.000	
11.19\% H	1.00794	5.9746E23	6.6855E22		6.6855 E 22
88.81\% 0	15.9994	3.7639 E 22	3.3427E22		3.3427 E 22
$\mathrm{H}_{2} \mathrm{O}+5 \mathrm{ppt} \mathrm{B}$	\# of B	in $5.00 \mathrm{mg}=$	2.7854 E 20		2.7854 E 20
$\mathrm{H}_{2} \mathrm{O}+5.72 \mathrm{ppt}$	B of B	in $5.72 \mathrm{mg}=$	3.1865 E 20		3.1865 E 20
Copper	63.546	9.4767E21	9.4767 E 21	8.96	8.4911E22
$69.2 x{ }^{63} \mathrm{Cu}$			6.5579E21		5.8758 E 22
30.8\% ${ }^{65} \mathrm{Cu}$			2.9188E21		2.6153 E 22
Fe	55.847	1.0783E22	1.0783E22	7.874	8.49E22
Carmon Steel				7.75	
99,1\% Fe	55.847	1.0783 E 22	1.07 E 22		8.28E22
1.0\% Mn	54.938	1.0962E22	1.10E20		8.50 E 20
0.9\% C	12.011	5.0138 E 22	4.51E20		3.50 E 21
304 Stainless				8.02	
69\% Fe	55.847	1.0783 E 22	7.44E21		5.97E22
19\% Cr	51.996	1.1582 E 22	2. 20E21		1.76E22
9\% Ni	58.69	1.0261E22	9.23 E 20		7.41E21
$2 \pm \mathrm{Mn}$	54.938	1.0962 E 22	2.19 E 20		1.76 E 21
1\% Si	28.086	2.1441 E 22	2.14E20		1.72 E 21
0.08\% C	12.011	5.0138 E 22	4.01 E 9		3.22 E 20
0.04\% P	30.974	1.9442E22	$7.78 \mathrm{El8}$		$6.24 \mathrm{E19}$
0.03\% S	32.06	1.8784 E 22	5.64 E 18		4.52E19
Polypropylene	$\left(\mathrm{CH}_{2}\right)^{\times}$			0.90	
$85.63 \%$ C	12.011	5.0138 E 22	4.293 E 22		3.86 E 22
14.37\% H	1.00794	5.9746E23	8.586E22		7.73E22
U	238.0289	2.5300E21	2.5300 E 21	19.05	4.82 E 22
$\mathrm{UO}_{2}$	270.03	2.2301E21		10.96	
01	238.0289	2,5300E21	2. 230E21		2. 44 E 22
02	15.9994	3.7639 E 22	4.460 E 21		4.89E22

### 6.2.4 Meutron Cross Sections and Mean Free Pathe

In addition to number density values, cross section and mean free path data is required by the models. Table 6.2 follows and lists useful cross section and mean free path data for the waterials found in the OTSG. The table lists the cross sections in barns ( 1 barn $=1 E-24 \mathrm{~cm}^{2}$ ). The mean free path
(MFP) is the average distance a neutron travels between collisions of a given type. The MFP is given by

$$
\operatorname{MFP}(c \mathbb{C D})=1 /\left[\sigma\left(\mathrm{cm}^{2}\right) * N_{c}\left(\# / \mathrm{cm}^{3}\right)\right]
$$

where " $\sigma$ " is the cross section in $\mathrm{cm}^{2}$ and " $\mathrm{N}_{\mathrm{c}}$ " is the volume based atomic number density in $\mathrm{cm}^{-3}$. The cross section data in the table are of three types 1) thermal neutron capture cross section, 2) thermal neutron scattering ćross section, and 3) total cross section at the 2 MeV peak of the fission spectrum. The $a * N_{c}$ products within a material add, so the MFP characteristic of the mixed material is given by

$$
1 / \mathrm{MFP}=\sum\left[1 / \mathrm{MFP}_{i}\right]
$$

Values for mixed materials are also found in the Table 6.2.

The total neutron cross section at 2 MeV is primarily a scattering cross section. A $2-\mathrm{MeV}$ neutron in the peak of the fission spectra will travel about 5 $c \mathbb{C}$ in the water before colliding with a hydrogen atom. This collision will cause the $2-\mathrm{MeV}$ neutron to lose half of its energy on the average. The neutron will continue to collide with other hydrogen atoms until it has lost most of its energy (i.e., it becomes a thermal neutron). The MFP will be sherter after each collision as the neutron loses energy. After several $120-$ 25) collisions the neutron will have approximately thermal energy (1/40 eV). Since the MFP (total) Por the boron in the water is much larger than for hydrogen, the added boron will have very little affect on the moderation prom cess.

Once a neutron has been thermalized, the thermal neutron scattering and capture cross sections apply. The thermalized neutron will not lose energy (on the average) during subsequent collisions since the hydrogen atoms also have thermal energy in the material, For thermal neutrons, without beron added to the water, the MFP to capture in hydrogen is 61.5 times larger than the MFP to the next hydrogen scatter. Thus a thermalized neutron will scateer many times before being captured without the added boron.

TABLE 6.2. Neutron Cross Section and Mean Free Fath Data

Material	Number   Density   Hec	```Thermal O(c) barns```	Capture $\operatorname{MFP}(c)$ c四	$\begin{aligned} & \text { Thermal } \\ & \text { g(s) } \\ & \text { barns } \end{aligned}$	Scatter MFP(8) c高		Total MFP(t) ca
Borated Water $\mathrm{H}_{2} \mathrm{O}$							
H	6.69 E 22	0.3326(7)	44.9	20.491(14)	0.73	2.9	5.2
0	3.34 E 22	0.00019(2)	1.6 E 5	3.761(6)	7.96	1.5	20.
B 5.00 ppt	2.79E20	767.(8)	4.67	4.27(7)	839.	1.8	2000
B 5.72 ppt	3.19 E 20	767.(8)	4.09	4.27(7)	734	1.8	1700
5 ppt mix	1.01 E 23	2.34	4.23	14.82	0.67	2.4	4.1
5.72pptmix	1.01 E 23	2.64	3.75	14.82	0.67	2.4	4.1
Copper	8.49E22	3.78(2)	3.11	7.78 (3)	1.51	3.0	3.9
69.2\% ${ }^{63} \mathrm{Cu}$	5.88 E 22	4.50(2)	3.78	$5.1(2)$	3.33		
$30.8 \%{ }^{65} \mathrm{Cu}$	2.62 E 22	2.17(3)	17.6	14.1(5)	2.71		
Fe	8.49E22	2.56(3)	4.6	11.35(3)	1.04	3.0	3.9
Carbon Steel wall 17 cm thick							
99.1\% Fe	8.28E22	2.56(3)	4.7	11.35 (3)	1.06	3.0	4.0
1.0\% Mn	8.50E20	13.3(2)	88.5	2.2(2)	530	3.5	340
0.9\% C	3.50 E 21	0.00350(7)	8.2E4	4.740(5)	60.3	1.7	170
mixture	8.72E22	2.55	4.5	11.03	1.04	2.9	3.9
304 Stainless cladding 0.95 cm thick							
69\% Fe	5.97E22	2.56(3)	6.54	11.35(3)	1.48	3.0	5.6
19\% Cr	1.76E22	3.07(8)	18.5	3.38 (1)	16.8	3.0	19.
9\% Ni	7.41E21	4.49(16)	30.1	17.8(4)	7.58	3.0	45.
2\% Mn	1.76E21	13.3(2)	42.7	2.2(2)	260	3.5	160
1\% Si	1.72E21	0.171 (3)	3.40 E 3	2.0437(17)	284	2.5	230
0.08\% C	3.22 E 20	0.00350(7)	) 8.87E5	4.740(5)	655	1.7	1.8E3
0.04\% P	6.24 E 19	0.172(6)	9.32 E 4	3.134(10)	5.11 E 3	3.0	5.3E3
0.03\% \$	4.52819	0.52(1)	4.3 E 4	0.98(5)	2.3 E4	3.0	3.4E3
mixture	8.86 E 22	2.98	3.79	9.89	1.14	3.0	3.8
85.63\% C	3,86E22	0.00350(7)	7.4 E 3	4.740(5)	5.47	1.7	15.
14.37\% H	7.73 E 22	0.3326(7)	38.9	20.491(14)	0.63	2.9	4.5
mixture	1.16 E 23	0.2228	38.7	15.26	0.56	2.5	3.5
	4.82E22	11.8	1.76			7,3	2.8
U1	2.44 E 22	7.57+4.2f	3.5			7.3	5.6
02	4.89E22	0.00019(2)	1.6 E 5	3.761 ${ }^{\text {(6) }}$	7.96	1.5	20.

When 5000 ppm boron is added to the water, most of the neutrons will be captured in the boron rather than hydrogen since the MFP to boron capture is much less than the MFP to hydrogen capture for this boron concentration. Note that the MFP to thermal capture in the boron is $\mathbf{5 . 6}$ [4.09/0.73] times longer than the hydrogen thermal scattering MFP. This means that non-thermal capture
of neutrons into boron is not significant. Therefore, 5000 ppo boron loading does not significantly interfere with the moderation process. Since moderation is not disturbed, a relatively uniform thermal neutron flux distribution is produced near the fuel by the hydrogen scattering/moderation process.

The thermal neutron capture cross section is the cross section per atom for neutron capture at thermal energies. The energy dependence of the capture cross section is basically $1 / \mathcal{A}$ for these materials. Although the energy distribution of fuel produced neutrons is a fission spectrum (which peaks at 2 MeV ), the ratio of neutron captures in the OTSG materials follows the product of the thermal neutron capture cross section and the number density of the waterials. Since the copper thermal capture MFP is the shortest of the waterials in the OTSG, the copper will compete favorably with the boron and iron for thermal neutron capture.

The measurements of the neutron activation of ${ }^{84} \mathrm{Cu}$ in copper coupons ( 0,25 -inch diameter, 4 -inch long copper rods) have been converted to a neutron flux estimate. A summary of the neutron flux estimates in the steam generators appears in Table 6.3. The table contains weighted average values in the column headed "Wtd Ave FLUX" for each area (J-leg or bowl) of the OTSG where nen-zere flux estimates were indicated. In some areas a significant non-zero flux estimate was not possible since the flux was below the limit of detection. In the column labeled "LTV" is a "less-than value" or upper limit where the mean of the neutron flux has a $95 \%$ chance of being below that value and only a $5 x$ chance of being above it. The "UTV" is l.645-sigma above either the mean flux or the minimum detectable flux.

### 6.3 FUCL ESTINATE BASED ON THE DERRIS VOLUME

A model of the debris volume, based on the video made during string emplacement, can be used to obtain a starting point estimate of the fuel weight in a $\mathfrak{d}$-leg of between 0.8 kg and 4.6 kg . In a bowl, the starting point estimate is 1.8 kg . The justification for these estimates is detailed below.

The debris in the OTSG $J$-legs appeared in the video to be relatively shallow, on the order of $1-3$ centimeters deep. It also appeared to settle slowly when stirred up by the TV camera suggesting a density between 1-2 $\mathrm{g} / \mathrm{Ca}^{3}$. Additional exidence by R. Lancaster and P . Babel ${ }^{(\mathrm{a})}$ indicates that approximately $7 \boldsymbol{x}$ of the pressurizer debris is fuel. Using this information, the fuel weight estimate is

$$
\text { Fuel }=\text { Depth } * \text { Area } * \text { Density } * \text { Fraction Fuel }
$$

[^5]Using this scheme limits on the amount of fuel in a J-leg will he set.
Using $1.1 \mathrm{EA} \mathrm{cm}^{2}$ as the area covered with debris in a J -leg, a lower limit is

$$
\begin{aligned}
\text { FUEL } & =[1 \mathrm{~cm}] *\left[1.1 \mathrm{E} 4 \mathrm{~cm}^{2}\right] *\left[1 \mathrm{~g} / \mathrm{cm}^{3}\right] *[0.001 \mathrm{~kg} / \mathrm{g}] *[0.07] \\
& =0.77 \mathrm{~kg}
\end{aligned}
$$

The upper limit for fuel in the J-leg is

$$
\begin{aligned}
\text { FUEL } & =[3 \mathrm{~cm}] *\left[1.1 \mathrm{E} 4 \mathrm{~cm}^{2}\right] *\left[2 \mathrm{~g} / \mathrm{ca}^{3}\right] *[0,001 \mathrm{~kg} / \mathrm{g}] *[0.07] \\
& =4.6 \mathrm{~kg}
\end{aligned}
$$

The depth of debris in the bowl was less than observed in the J-legs. The average debris depth appear to be less than 1 cw. The corresponding upper and lower ligits for the OTSG bowls with an area of $2.5 E 4 \mathrm{~cm}^{2}$ would be 1.75 kg and 3.5 kg , assuming $1 \mathrm{~g} / \mathrm{cm}^{3}$ and $2 \mathrm{~g} / \mathrm{cm}^{3}$ densities for the debris, respectively.

Note the debris volume estimate did not use the measured neutron flux but is included in this section to show that fuel weights based on the neutron flux measurements are reasonable.

Also this model uses the same parameters for both the $A$ and B OTSGs, so the fuel estimates from this model listed in Table 6. 3 are the same for both systems. It is not the purpose of this report to provide detailed analysis of the video records but to use the general impressions from the video to insure reasonable fuel estimates based on the neutron flux measurements.

### 6.4 SIMELS MODEL

The simplest method to obtain an estimate of the amount of fuel in the OTSG is to merely multiply 1) the neutron flux, measured by the ${ }^{64} \mathrm{Cu}$ activation, 2) the area, $A$, of the debris, and 3) the neutron production rate in the fuel. This simple model converts the neutron flux to fuel by

$$
\text { Fuel }=\left[\Phi n /\left(s * \mathrm{ca}^{2}\right)\right] *\left[A c \mathbb{a}^{2}\right] /[120 \mathrm{n} /(\mathrm{s} * \mathrm{~kg})]
$$

The corresponding fuel estimates are listed below in Table 6.3 based on the measured flux estimates, which are also listed in the table.

TABLE 6.3. Summary of OTSG Neutron Flux Measurements with Fuel Estimates Using Beth the Simplest Flux Based Model and the Debris Volume Estimates

LOCATION	Wtd Ave FLUX $\mathrm{n} / \mathrm{sec} / \mathrm{cm}^{2}$	FLUX   LTV   $\mathrm{n} / \mathrm{sec} / \mathrm{cm}^{2}$	DEBRIS AREA $\mathrm{Cm}^{2}$	Simple Model   FUEL FUEL   EST LTV   kg kg		Debris Volume   FUEL FUEL   EST LTV   kg kg	
1A/J-leg	0.016(3)	0.020	1.154	0.93	1.16	0.77	4.6
2A/J-leg	0.009(3)	0.014	1.154	0.52	0.81	0.77	4.6
A/BONL	----	0.006	2.5E4	--	0.79	1.75	3.5
A sum				1.45	2.87	3.29	12.7
18/J-leg	-----	0.005	1.1E4	----	0.29	0.77	4.6
2B/J-leg	0.024(3)	0.030	1.1E4	1.39	1.73	0.77	4.6
B/BOWL	-----	0.004	2. 5E4	----	0.53	$\underline{1.75}$	3.5
B sum				1.39	2.55	3.29	12.7

This simple model is more than just dimensionally correct. Without the water to moderate the fission spectrum neutrons, the fission neutron flux would have to be reduced to an effective flux corresponding to only the lowerenergy component where thermal neutron capture dominates. However, with water filling the OTSG the fission spectrum neutrons produced by the fuel are woderated and generally are captured within a mean free path (corresponding to the neutron's original energy) of the source point, During the neutron moderation process, neutrons collide about 25 times and travel on a randow path through the region surrounding the source point. Since neutrons produced in the vicinity of a coupon will be moderated to thermal energy in that vicinity, it is not necessary to reduce the effective neutron flux to only the lowenergy, thermal component.

The model assumes that neutrons can escape the fuel debris without significant absorption in the fuel debris. Assuming as much as 10 kg of uranium in a J-leg, one only has $0.91 \mathrm{~g} / \mathrm{cm}^{2}$ of uranium in a debris layer. At standard uranium density ( $19.05 \mathrm{~g} / \mathrm{cm}^{3}$ ) this would be 0.047 cm thick. The MFp for a 2 MeV neutron though standard uranium is 2.8 cm which is about 60 times greater than the thickness of uranium in the debris. Thus, assuming neutrons can escape the fuel debris is justified for the high-energy portion of the fission spectra.

The model does not take into account neutrons which escape directly out through the steel wall. Initially half of the neutrons produced in the fuel are headed out through the steel wall. Kewever, the wall thickness (17 cml is large compared to the MFF for collision with an iron nucleus. Neutrons colliding with the much heavier iron nuclei are more likely to be back scattered without much energy loss than when colliding with the much lighter hydrogen or
oxygen atoms in water. Thus one can expect that a significant fraction of neutrons initially headed out of the OTSG through the wall will return to the region of the coupons.

There will be some tendency for the thermal neutron flux to be higher a short distance above the source plane since the mean free path of the $2-\mathrm{MeV}$ neutrons is about 5 cm in water and neutrons will have to wander back to the wall, with which the copper coupon is in contact, with shorter MFP values after each collision. However since the source plane is large, and most neutrons escape in a direction other than normal to the plane, this effect should not be large.

Without the boron loading of the water; neutrons would scatter many tines $[\mathrm{MFP}(\mathrm{H}-\mathrm{c}) / \mathrm{MFP}(\mathrm{H}-\mathrm{s})=44.9 / \mathrm{m} .73=61.5]$ before eventually being captured in hydrogen. Since this would allow neutrons several passes at the copper rod, one would have an effective increase in the thermal neutron flux relative to that expected from the source strength. However, with the boron loading the number of thermalized neutron scatters [MFP(B-c), MFP(H-s) $=4.01 / 0.73=5.5$ ] is much less.

With these competing effects, one can expect the prediction of this simple model to be reasonably correct.

## ©. 5 NEUTRON CAPTURE MODELS

The neutron capture model converts the measured neutron flux into estimates of the total fuel remaining in each OTSG. The total fuel in the $A-$ OTSG is about equal to that in the B-OTSG and is less than 5 or 10 kg depending on the parameter values used in the capture model. The capture medel is discussed in detail below.

The neutron capture model considered assumes 1) that the neutron flux can be treated as relatively uniform throughout a relatively small volume element near the water/fuel/steel interface at the bottom of the bowl and J-legs and 2) that the neutron production rate in the volume element equals the neutron capture rate in the volume element. When this occurs, neutrons will be captured in the various materials found in the volume element in the ratio of the a*N products for each material.

The key to applying this model is finding a reasonable volume element. One qust first realize that the neutrons will not travel across the 2 minches of water in the J-leg, so the entire J-leg volume would not be a useful basis for the model.

The problem can be reduced to two infinite half planes（borated water in one and steel in the other）in the region of a single copper coupon．When the fuel is considered a planar neutron source at the water／steel interface， the number of thermal neutrons can be expected to fall off exponentially into either the water or iron half planes．Most of the neutrons will not be able to cross 28 －inches of borated water to interact in the far wall of the J－leg． Also it will make no difference to the model if a few neutrons penetrate the J－leg wall and escape since the result is the same if the model considers them captured in non－existent material or they leave the outer wall．Also，the wall curvature can be neglected compared to the other problem dimensions．

The number of neutrons captured within an infinitely thick volume from a planar source is calculated as an integral into the volume with an exponential weighting factor， $\exp (-x / a)$ ，where $" a$＂is the attenuation length．This volume integral is equivalent to a uniform weighting up to the attenuation length and to zero weighting beyond that distance．

$$
\begin{aligned}
& \left.\int_{0}^{\infty} e^{-(x / a)} * d x=-a * e^{-(x / a)}\right]_{0}^{\infty}=-a *\left[e^{-\infty}-e^{0}\right]=a \\
& \int_{0}^{a} 1 * d x=a
\end{aligned}
$$

The uniform weighting or uniform neutron Plux over a region is assumed by the simple capture model．An appropriate value of the attenuation length，＂a＂，is required．

One reasonable choice for the attenuation length is the MFP associated with the total cross section at 2 MeV ．The $2-\mathrm{MeV}$ MFP is the distance the neutron travels from the source point before interacting．The general rule of thumb is that neutrons are captured in the region of first interaction due to the random walk path of the neutron during the moderation process．The MFP walue for the borated water is 4.1 cm and the value for the steel wall is 3.9 c⿴囗十 ．The slightly lower value for the cladding； 3.8 ，will not be used since most $2-\mathrm{MeV}$ neutrons pass through the clad without interacting．One can argue that these distances should be increased to allow for a region for the neutron to moderate in following the first interaction．Conversely，one can argue that these distances are too large to apply to the planar geometry since only a very few neutrons are emitted from the fuel normal to the plane．

Another reasonable choice for the attenuation length，from an engineering point of view，is the effective removal cross section．It has been demonstrated that the attenuation of fission neutrons through west shields can be expressed by a simple exponential function using an effective removal cross section．The removal cross section data are obtained from shielding measure－
ments and corresponds to removal of the fission spectra neutron flux by a given thickness of material. This approximation assumes water fllowing the shielding material. The following table lists these cross sections and associated mean free paths.

TABLE 6.4. Fission Spectra Removal Cross Section Data

Material	Fission spectra remoษ̆al cross section (/cm)	Mean Free Path MFP (cm)
Water	0.103	9.71
B	0.180	5.56
Fe	0.168	5.95
Cu	0.173	5.76

The atzenuation length in water, $a_{\text {, }}$, and in iron, $a_{i,}$, will be used to determine the dimensions of a rectangular $\begin{gathered}\text { ₹olume element surrounding the cop- }\end{gathered}$ per coupon. This volume element will then be used to convert the measured neutron flux into a neutron source strength and subsequently to a fuel weight estimate. Figure 6.1 provides the geometry for our model where the dimensions of a rectangular box surrounding the copper coupon are expressed in teras of the attenuation lengths. The copper coupon is shown as the " 0 " in the center of the box. The rectangle of water above the coumon extends one attenuation length: " $\mathrm{a}_{\mathrm{w}}$ ", into the water. The rectangle of iron below the coupon also extends one attenuation length; "a $a_{i}^{\prime \prime}$, into the iron. The width; "w", of both boxes is the sum of these attenuation lengths. The desired conversimen factor wilf not depend strongly on the value used for the width since both the source strength and the mumber of neutrons captured in the box increase linearly with "W". The diaension of the box into the page we will take as the 10-cm length of the coupon. In fact since the 18 moupon string used for the measurement is long compared to the box dimensions, any value consistently used is exact. The neutron source plane is at the iron/water interface.


FIGURE 8.1. Geometry for Capture Model

The model assumes that all the neutrons produced in the box are captured in the box, since any neutrons escaping the box will be replaced by an equal number from outside the box by symmetry. The copper coupon breaks the symm metry, but since the width of the box is sufficiently large so that the copper coupon will not see a significant number of neutrons produces outside the box; it does not need to use the symmetric escapefreplacement argument for neutrons it affects.

The neutron capture rate in the copper rods is

$$
\mathrm{CR}_{c u}(\mathrm{n} / \mathrm{s})=\sigma_{\mathrm{cu}} * * \mathrm{~N}_{\mathrm{cu}}=1.025 *\left(\mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}\right)
$$

where $o_{c u}=3.38 \mathrm{E}-24 \mathrm{~cm}_{63}^{2}$ is the thermal neutron capture cross section in copper (natural mix of both ${ }^{63} \mathrm{Cu}$ and ${ }^{65} \mathrm{Cu}$ ), $\Phi$ is the measured neutron flux in $\mathrm{n} /\left(\mathrm{s} * \mathrm{~cm}^{2}\right)$, and $\mathrm{N}_{\mathrm{Cu}}=2.7103 \mathrm{E} 23$ is the number of copper atoms in one $28.60-\mathrm{gram}$ coupon.

Since the neutrons will be captured in the ratio of the $\sigma * N$ products, the neutron capture rate in the borated water portion of the box is

$$
\begin{aligned}
& \mathrm{CR}_{\mathrm{B} \text { water }}(\mathrm{n} / \mathrm{s})=\frac{\sigma_{\mathrm{Bwater}}{ }^{* N_{\text {Bwater }}}}{\sigma_{\mathrm{cu}} \mathrm{~N}_{\mathrm{cu}}} * \mathrm{CR}_{\mathrm{Cu}}(\mathrm{n} / \mathrm{s})
\end{aligned}
$$

where $\sigma_{\text {Bwater }}=2.64 \mathrm{E}-24 \mathrm{~cm}^{2}$ is the thermal neutron capture cross section in the mixture of water with 5720 ppm $B$ added, and $N_{\mathrm{Bmazar}}$ is the number of atoms in the water volume. $N_{\text {Buater }}$ is the product of the volume based number density of the mixture which is 1.01823 atoms $/ \mathrm{cm}^{3}$ and the water volume which is $V_{\text {日vater }}=10 \mathrm{~cm} *\left(\alpha_{w}+a_{i}\right) * a_{w}$ in terms of the box dimensions. Therefore, the neutron capture rate in the water is

$$
\left.\left.\begin{array}{rl}
C_{B \times a t e r}(\mathrm{n} / \mathrm{s})= & {\left[2.64 \mathrm{E}-24 \mathrm{~cm}^{2}\right]}
\end{array}\right]\left[1.01 \mathrm{E} 23 \| / \mathrm{cm}^{3}\right] *[10 \mathrm{~cm}]\right\}
$$

Likewise, the number of neutrons captured in the iron portion of the box is

$$
C_{P_{f}}(\mathrm{n} / \mathrm{s})=\sigma_{\mathrm{F}_{e}} * \mathrm{~N}_{\mathrm{pe}} * T
$$

where $\sigma_{p_{e}}=2.56 \mathrm{E}-24 \mathrm{Em}^{2}$ is the thermal neutron capture cross section in iron and $N_{y_{e}}$ is the number of atoms in the iron volume. The number density is 8.49 E 22 atoms $/ \mathrm{cm}^{3}$ and the iron volume is given by $v_{\mathrm{q}_{\theta}}=10 \mathrm{~cm} *\left\{\mathrm{a}_{\mathrm{w}}+\mathrm{a}_{1}\right\} * a_{i}$. Therefore, the capture rate in the water is

$$
\begin{aligned}
& \operatorname{CR}_{\mathrm{r}}(\mathrm{n} / \mathrm{s})=\left[2.56 \mathrm{E}-24 \mathrm{~cm}^{2}\right] *\left[8.49 \mathrm{E} 22 * / \mathrm{cm}^{3}\right] *[10 \mathrm{~cm}] \\
& *\left[a_{k}+a_{1}\right] *\left[a_{i}\right] * \Phi\left(n / s / \mathrm{cm}^{2}\right) \\
& C R_{e}(n / s)=2.17 *\left[a_{i}+a_{i}\right] *\left[a_{i}\right] * \Phi\left(n / s / \mathrm{cm}^{2}\right)
\end{aligned}
$$

Now the total capture rate is

$$
\begin{aligned}
& \operatorname{CR}(n / s)=\operatorname{CR}_{\mathrm{Cu}}(n / \theta)+\mathrm{CR}_{\mathrm{BWAtE}}(n / s)+\mathrm{CR}_{\mathrm{Pe}}(\mathrm{n} / \mathrm{s}) \\
& \mathrm{CR}(\mathrm{n} / \mathrm{s})=1.025 * \Phi+2.67 *\left[\mathrm{a}_{*}+\mathrm{a}_{\mathrm{i}}\right] *\left[\mathrm{a}_{\mathrm{w}}\right] * \Phi+2.17 *\left[\mathrm{a}_{\mathrm{w}}+\mathrm{a}_{\mathrm{i}}\right] *\left[\mathrm{a}_{\mathrm{i}}\right] * \Phi
\end{aligned}
$$

If $S S$ is a source strength per unit area on the source plane, the neutron production rate inside the box is given by

$$
\operatorname{PR}(n / s)=S S\left(n / s / \mathrm{cm}^{2}\right) *[10 \mathrm{~cm}] *\left[\mathrm{a}_{\mathrm{v}}+\mathrm{a}_{1}\right]
$$

where $a_{w}$ and $a_{i}$ are in centineters. But the model assumes that the production rate in the box equals the capture rate in the box; therefore $C R=P R$, which solving for $S S$ yields

$$
3 S\left(n / s / c \mathbb{m}^{2}\right)=\left[1.025 /\left(a_{w}+a_{i}\right)+2.67 * a_{k}+2.17 * a_{i}\right] * / 10
$$

where $a_{w}$ and $a_{i}$ are in centimeters and $\Phi$ is in $n / s / \mathrm{cm}^{3}$. The length of the coupon exactly divides out of the expression, making the result completely insensitive to the length of the coupon. Also, the width of the box divides out of the major terms in the sum making the result relatively insensitive to the box width.

The amount of fuel in the region is related to the source strength per unit area by

$$
\mathrm{SS}\left(\mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}\right)=[190 \mathrm{n} / \mathrm{s} / \mathrm{kg}] *[\text { Fuel }(\mathrm{kg})] /\left[\text { Debris area }\left(\mathrm{cm}^{2}\right)\right]
$$

so the amount of fuel in the region is given by

$$
\text { Fuel }(\mathrm{kg})=\frac{\operatorname{Area}\left(\mathrm{cm}^{2}\right) *\left[1.025\left(\mathrm{a}_{\mathrm{k}}+\mathrm{a}_{\mathrm{i}}\right)+2.67 * \mathrm{a}_{\mathrm{i}}+2.17 * \mathrm{a}_{\mathrm{i}}\right] *\left(\mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}\right)}{10 *[190 \mathrm{n} / \mathrm{s} / \mathrm{kg}]}
$$

where $a_{w}$ and $a_{i}$ are in centimeters.
Consider two cases with the box dimensions determined by 1 the $2-\mathrm{MeV}$ MFPs and 2) the effective removal MFPs. In the first case, using the $2-\mathrm{MeV}$ MFPs, we have $a_{x}=4.1 \mathrm{~cm}$ and $a_{1}=3.9 \mathrm{~cm}$ so the fuel estimate becomes

$$
\text { [Fuel(kg)] }=\left\{\text { Debris area }\left(\mathrm{cm}^{2}\right)\right] * 0.0103 * \$\left(\mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}\right\}
$$

This is the formula used in Table 6.5 for the first estimates, In the second case, using removal cross sections, $a_{w}=9.7 \mathrm{~cm}$ and $a_{i}=6.0 \mathrm{~cm}$, so the fuel estimate becomes

$$
[\text { Fuel }(\mathrm{kg})]=\left[\text { Debris area }\left(\mathrm{cm}^{2}\right)\right] * 0.0205 *\left(\mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}\right)
$$

The results for these two cases are shown in the following table.

TABLE 6.5. Summary of OTSG Neutron Flux Measurements with Fuel Estimates Using the Neutron Capture Model with Two Parameter Selections

LOCATION	Wtd Ave FLUX $\mathrm{n} / \mathrm{sec} / \mathrm{cm}^{2}$	$\begin{aligned} & \text { FLUX } \\ & \text { LTV } \\ & \mathrm{n} / \mathrm{sec} / \mathrm{cm}^{2} \end{aligned}$	DEBRIS AREA $C^{\prime 2}$	2 MeV o total   FUEL FUEL   EST LTV   kg kg		Removal a	
						FUEL	FUEL
						EST	LTY
						kg	kg
1A/J-leg	$0.016(3)$	0.020	1.154	1.81	2.26	3.61	4.51
2A/J-leg	0.009(3)	0.014	1.1 E 4	1.02	1.58	2.03	3.16
A/BOWL	----	0.006	2.5E4	----	1.54	--=	3.08
A sum				2.83	5.38	5,64	10.75
1B/J-leg	---	0.005	1.1 E 4	---.	0.56	----	1.13
2B/J-leg	0.024(3)	0.030	1.1 E 4	2.71	3.39	5.42	6.77
B/BOWL	----	0.004	2.5E4	$\cdots$	1.03	----	$\underline{2.05}$
B sum				2.71	4.98	5.42	9.95

Next, the possible errors that this model might include are addressed.
Throughout this derivation of the amount of fuel, the measured neutron flux was only multiplied by the thermal neutron cross section. In the conversion of the measured count rates to the neutron flux: the flux was an effextive thermal flux since the product of the thermal cross section and the measured flux was used rather than a more complex energy convolution. The same has been done here, so the fuel estimate has not been compromised by the simple effective thermal flux approach.

The model also assumes a uniform neutron flux, $\Phi$, within the box. How ever there will be an asymmetry in the flux at the interface due to the albedo of the interface. As mentioned before, the flux on the iron side is likely to be lower than on the water side due to the greater tendency of neutrons to backscatter off the heavier iron nuclei. The actual flux measurement was made on the water side of the interface so the model would overestimate the number of neutrons captured on the iron side (less flux there). If one assumed a $20 \%$
backscatter off the iron, the flux on the iron side would be 67\% (80/120) of the water side flux. As a result, the fuel estimate in the table would be about $15 \%$ high as a result, Note that the lower removal MFP for iron compared to water is likely due to the greater backscatter off the iron.

The copper captured less than $1 \%$ of the neutrons in the box so any adjustment of the box width, which impacted only the neutrons captured in the copper, would have only a very small impact on the fuel estimate.

The amount of fuel in the box also does not interact with a very large number of neutrons. First fros Table 6-2; note that the MFP for a $2-\mathrm{MeV}$ neutron is 2.8 cm in uranium, which is greater than the thickness of uranium in the debris. Assuming as much as 10 kg of uranium evenly dispersed in a $J$ leg, one only has a $0.91 \mathrm{~g} / \mathrm{cm}^{2}$ layer of uranium in the debris. That would correspond to a solid uranium layer only 0.048 cm thick given the $19.05 \mathrm{~g} / \mathrm{cm}^{3}$ density of uranium. Once the high-energy neutrons escape the debris they have a chance of again entering the debris as thermal neutrons and being captured there. With a 11.77 barn [ 7.57 capture +4.2 fission] cross section for natural uranium to interact with thermal neutrons, the interaction rate in the uranium is

$$
\begin{aligned}
& I R_{U}(n / s)=\left[11.77 \mathrm{E}-24 \mathrm{~cm} \mathrm{~m}^{2}\right] *[2.5300 \mathrm{E} 21 \# U / \mathrm{g}] *\left\{0.91 \mathrm{~g} / \mathrm{cm}^{2}\right\} \\
& *\{10 \mathrm{~cm}] *\left[a_{k}+\mathrm{a}_{\mathrm{i}}\right] * \Phi \\
& I R_{U}(\mathrm{n} / \mathrm{s})=0.271 *\left[\mathrm{a}_{\mathrm{w}}+\mathrm{a}_{i}\right] * \Phi
\end{aligned}
$$

which can be compared to the capture rate in water

$$
C A_{\text {twater }}(n / s)=2.67 *\left[a_{w}+a_{i}\right] *\left\{a_{w}\right] *
$$

Since $\mathrm{CR}_{\mathrm{Bwater}}$ is $9.85 \mathrm{~F}_{\mathrm{w}}$ times larger than $\mathrm{If}_{\mathrm{U}}$, the 10 kg of uranium would interact with less than $2.5 \%$ of the neutrons captured in the boron loaded water if $a_{w}=4.1 \mathrm{~cm}$, or less than $1.0 \%$ of the neutrons if $a_{w}=9.7 \mathrm{~cm}$. Therefore the fuel distribution parameters are not a major source of error for this model. Although the fuel has more than the natural abundance of ${ }^{235} U$ (capture $0=98$ barns and fission $\sigma=580$ barns), the ${ }^{235} U$ enrichment of the fuel should not reduce the fuel estimate significantly,

This fuel calculation considered the major neutron poison, boron [oseat $=$ 4.27(7) barns, $\sigma_{c a p t}=767(8)$ barns; and resonance integral $I_{z}=344\{1$ ) barns! at $5,72 \mathrm{ppt}$. If large amounts of other neutron capturing materials like cadmium [wat $=5.6(6)$ barns, $\sigma_{\text {capt }}=2520(50)$ barns; and resonance integral Iy $=70\left\{10\right.$ ) barns] or silver $\left[\sigma_{s c a t}=5.08(3)\right.$ barns, $\sigma_{c a p t}=63.3(4)$ barns, and
$I_{Y}=756(20)$ barns) were mixed in with the debris, the amount of fuel could be greater than estimated with this model. However; without information on amounts of other neutron poisons present, any attempt to adjust the fuel estimate would be speculation. Since most of the fuel produced neutrons spend far more time in the water volume than the solid debris, the relative affect of neutron poisons on the fuel estimate should scale as the ratio of concentration in water times capture cross section. \$ilver and cadmium are much less water soluble than boron; therefore the boron poison should dominate. If the neutron poisons were mixed in with the fuel debris, the danger of criticality is greatly decreased. In fact, the neutron flux measured is probably the best estimator for criticality danger from the unknown mixture.

The major uncertainty in the neutron capture model involves the values used for $a_{w}$ and $a_{i}$. The fuel estimate will vary linearly with changes in these parameters. Since the model is most sensitive to these parameters, the formula for the fuel estimate left these explicitly in the equation.

Some estimation of the proper value of $a_{w}$ is available from calibration experiments performed at PNL. These experiments were performed in borated water using a ${ }^{252} \mathrm{Cf}$ point source and a 5 -inch long, 0.25 -inch diameter ${ }^{3} \mathrm{He}$ sensor. The ${ }^{252} \mathrm{Cf}_{\mathrm{f}}$ source strength was $6.3 \mathrm{E} 6 \mathrm{n} / \mathrm{s}$. A series of measurements were made with varying distances between source and sensor. The problem of determining the appropriate value of a for the capture model is difficult since the measurements were made with a point source and an extended cylindrical sensor. The raw data appear in the followinstable.

TABLE 8, 6. ${ }^{3}$ He Sensor to Source Data

Source-sensor   distance (col	Sensor   Count	$\mathrm{a}_{w}$ est   cm
1.3	20,000	0.23
3.2	18,000	0.67
5.7	11,000	1.2
8.3	8,000	1.8
10.8	3,500	2.2
13.3	1,600	2.5
15.9	980	2.8
18.4	610	3.2
21.0	290	3.3
23.5	$85 \%$	3.2
26.0	68	3.5

The a estimates shown in the table are the values required at each distance to equate the measured count rate with the value calculated for that distance assuming 100\% detection efficiency for thermal neutrons in a ${ }^{3} \mathrm{He}$ sensor. The $\exp \left\{-r / a_{4}\right) / r^{2}$ model of distance dependence was used. The
extended sensor was numerically integrated over it length. As one can see the model does not exactly apply since the counts at short distances were lower than would be predicted with a constant a value. At short distances from the source there will be a significant high-energy neutron component to the flux that the ${ }^{3} \mathrm{He}$ will not efficiently detect. At larger distances an attenuation constant. of about 3 cm appears consistent with the data.

When plotting the raw data on log log paper there is a knee (or inflection point) at 7.6 cm with a relatively linear $\log / \log$ relationship beyond 7.6 cm . This would correspond to the length of the sensor becoming less important. Beyond this point neutron scattering may obscure the difference between a point and extended source. One also would expect a largely thermalized neutron field past this point. Beyond about 8 -cm separation, the data fits the function

$$
\text { Cnt }=29,700 * \exp [-x(\mathrm{c} 1 / / 7.25]
$$

reasonably well. This would point to an $a_{v}$ value of 7.25 cm . The other view would be that since the function starts to drop rapidly beyond 7.6 cm , an $\mathrm{a}_{\mathrm{w}}$ value of 7.6 cm would be supported.

Simply integrating (numerically) the limited raw data over the separation yields a value equal to the product of $20,000 * 6.3 \mathrm{~cm}$. This is an indication that $a_{k}$ is on the order of 6.3 cm .

The experimental data can not be made to fit the crude model more accurately, since the model is only an approximation. It is somewhat Irustrating that the point source data can not be readily transformed into planar source information. However, one must recognize that the neutron scattering/moderation process obscures information about the source geometry. The experimental data is consistent with an a value less than the removal MFP of 9.7 cm used in case II above. Thus the LTV for case II ( 10 kg fuel per OTSG) appears to be a very reasonable upper limit for the fuel present.

### 6.6 EMPIRICAL NEUTRON ERODUCTION MODEL

This section will examine the calibration measurements made at RNL. These measurements used a ${ }^{252}$ Cf neutron source behind various metal plates under boron-loaded water and over a thick steel plate as a mockup for the measurements in the steam generator. These measurements were made using a ${ }^{3} \mathrm{He}$ proportional counter in a water tight polypropylene tube as the neutron sensor. The experiments measured the relative contribution to the neutron flux for a point source displaced from the sensor location. The experimental results allow calculation of the activity produced by selected distributions of fuel.

Since these meckup experiments were done at PNL before the measurements at TMI, only a few experimental cases match the OTSG situations. One of the most direct calibrations involved placing the $6.5 \mathrm{E} 6 \mathrm{n} / \mathrm{s}^{252} \mathrm{Cf}$ source in a tank oyer a 4 -inch thick steel plate. The 0.5 -inch diameter source was placed in a slot milled in a half-inch thick aluminum plate. The source was covered over with an additional 2 -inch thick aluminum plate to simulate attenuation in some fuel debris. Then a string of eight copper coupons (in the same plastic jacket used at TMI) was placed on top of the plate for a 2 -hour activation by the neutron source. The tank above the aluminum plate was filled with 5000 ppm borated water. The coupons were counted on a NaI(Tl) coincidence counter at PNL (in a manner similar to the way the TMI coupons were counted). This ceunter is referred to as the Packard-5. Measurements were made with the 0.25 -inch diameter, 5 -inch long ${ }^{3}$ He sensors alonsside the copper coupons for cross calibration between the copper coupon measurements and the ${ }^{3} \mathrm{He}$ sensors. The ${ }^{54} \mathrm{Cu}$ activation data from Packard-5 was reduced to a neutron flux estimate ( $\mathrm{N} \rightarrow \mathrm{FLUX}$ ) in the same manner as the coupons from the OTSG measurements. These flux estimates are listed in Table 6.7.

TABLE 6.7. Resuits of PNL Copper Coupon Activation with $6.5 \mathrm{E} 6 \mathrm{n} / \mathrm{s}$ Source Data Set Title: K-COUPONS PNL ACTIVATION File: A:KALE.DAT

COUPON LABEL	BKG	CNT	$\begin{gathered} \text { N-FLUX } \\ \mathrm{n} /\left(\mathrm{s} * \mathrm{~cm}^{2}\right) \end{gathered}$	$\begin{aligned} & \mathrm{NF}-\mathrm{ERR} \\ & \mathrm{n} /\left(\mathrm{s} * \mathrm{~cm}^{2}\right) \end{aligned}$	$x-E R R$	FAP	$\begin{aligned} & \text { MDL-FLUX } \\ & \mathrm{n} /\left(\mathrm{s}^{*} \mathrm{~cm}^{2}\right) \end{aligned}$
Kı	1.23	2244	964.8710	20.3796	2\%	0.000000000	2.4827
K1-2	2.46	2775	966.7588	18.3685	2\%	0.000000000	2.6298
K2	1.23	3998	1643.0067	25.9927	2\%	0.000000000	2.3723
K3	1.23	2649	1149.5175	22.3448	2\%	0,000000000	2.5054
K3-2	2.46	3281	1171.¢233	20.4698	2\%	0.000000000	2.6951
K4	2.46	1732	392.1895	9.4372	2\%	0.000000000	1.7102
K5	2.46	523	143.1458	6.2891	4\%	0.000000000	2.0739
K 6	4.92	359	51.8844	2.7769	5\%	0.000000000	1.3310
K7	7.37	240	24.2833	1.6183	7\%	0.000000000	1.1092
K8	7.37	91	9.3204	1.0651	11\%	0.000000000	1.1842
K8-2	103.00	969	10.7009	0.3973	4\%	0.000000000	0.4201

The coupon K2 was directly abowe the source. Note that coupons K1 and K3 were each centered 4 inches away but the flux seen by Kl was $16 \%$ lower than K 3 due to $K 1$ being closer to the edge of the tank where neutrons could escape the tank. Counts labeled "Kn-2" were recounts of the same coupon at a later time. The recounts agree statistically with the initial counts.

The next step is to take these point source measurements and attempt to estimate the amount of planar distributed neutron source required to produce the ${ }^{54} \mathrm{Cu}$ activity corresponding to the measured flux values. One approach is to assume a uniform planar source producing $1 \mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}$. Then to divide up the
source plane into concentric rings 4 -inches wide. Since 4-inches corresponds to the length of the copper coupon, finer spatial resolution of the source plane would not be distinguishable in either the calibration data or the TMI measurements. Since the measured neutron flux does not fall off rapidly with displacement from the point source and the moderation process obscures the details of the source geometry, the value of each point source measurement can be reasonably used as representative of any point source within a 2 -inch radius. Although it is not possible to match the experimental data to an attenuated point source model exp(-r/a)/ $r^{2}$, it is possible to use linear superposition of point sources to model a planar source.

A point source could be placed anywhere in the ring corresponding to a given displacement and the copper coupon in the center of the concentric ring model would see a neutron flux consistent with our flux measurement for that source/sensor displacement. Since a planar source strength of $1 \mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}$ has been assumed, the contribution from each ring is our measured flux times the ring area divided by the source strength of our point source. This is like placing a $1 \mathrm{n} / \mathrm{s}$ source on every square centimeter of the ring. Linear superposition of these small sources implies that the flux from the planar source equals the sum of these small point sources.

All the mathematically complex neutron scattering applies identically to both our large point source and the several smaller ones. Any necessary spatial averaging over the point sources has been done by the spatial extent of the copper coupon. The contributions from each concentric ring to the estimated neutron flux seen by the coupon from our planar $1 \mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}$ source are listed in Table 6.8 below. In the table, the inner ( $R 1$ ) and outer ( R 2 ) radii of the concentric rings are listed. The values under "MeasFLUX" are the values of the flux required to produce the ${ }^{64} \mathrm{Cu}$ activity measured in the copper coupons. The values under "EstFLUX" equal MeasFLUX*AREA/6. 5E6 and are the estimated flux that a planar neutron source of $1.0 \mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}$ would produce based on our measurements. Also in the table are the count rates on the ${ }^{3}$ He sensor at the positions of the copper coupons. The last column is the ratio between the ${ }^{3}$ He count and the "MeasFLUX" value. The ${ }^{3}$ He senser projected area is 8,06 $\mathrm{cm}^{2}$, so the average efficiency for measuring the flux responsible for ${ }^{*} \mathrm{Cu}$ activation was 51\%, which seems reasonable.

TABLE 6,8. Flux Conversion of PNL Copper Coupon Data

REGTON (Coupon)	$\begin{aligned} & \mathrm{R} 1 \\ & \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \mathrm{R} 2 \\ & \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \text { AREA } \\ & c \mathbb{D}^{2} \end{aligned}$	MeasfLUX   $\mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}$	EstFLUX   $\mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}$	${ }^{3} \mathrm{He}$ Count	Ratio
K2	0	5.1	81.0	1640	0.0204	7391	4.51
K3	5.08	15.2	648.6	1150	0.1148	4028	3.50
K4	15.2	25.4	1297.2	392	0.7823	1253	3.20
K5	25.4	35.6	1945.8	143	0.0428	818	5.72
K6	35.6	45.7	2594.3	52	0.0208	321	6.20
K7	45.7	55.9	3242.9	24	0.0120	135	5.62
K8	55.9	66.0	3884.5	10	0.0060		
sum $=13694.3$				Bum $=0.9991$		$\begin{aligned} \text { ave } & =4.80 \\ \text { se ave } & =0.72 \end{aligned}$	

The systematic errors in this experiment are such that the values in the "MeasFLUX" column are smaller than they should be. This means that the planar source strength required to match a measured flux value will be a lower limit. The limited extent of the tank and limited depth of borated water in the tank allowed neutrons to escape the system which in the larger OTSG would continue to scatter and increase the measured flux value. The magnitude of this underestimate is indicated by the measured flux in K1 being $16 \%$ lower than in K3. The K1 coupon was cloger to a wall than any of the other coupons so the underestimation for the coupons used was probably less than 10\%. The aluminum plate between the source and the coupons is thicker than necessary to match the attenuation due to the amount of fuel debris seen by video. The ${ }^{3}$ He count directly over the source with only the slotted aluminum plate was 2.8 times that with the extra 2 -inch thick plate. At an 8-inch offset it was 1.5 times larger and at 20 -inch offset it was about the same. The error due to the thicker plate will be addressed later. Likerise, any contribution to the flux when the source is at greater distances than the dimensions of the tanks have been ignored. Since the contribution of the larger rings is dropping rapidly this should contribute no more than a $5 \%$ error.

To estimate the amount of fuel in the region of a copper coupon one can scale from this calibration data by using the ratio

where " 8 " is the neutron flux measured at TMI by the copper coupon activation, and " $A$ " is the fuel debris area. The assumed source strength of the planar source was $1 \mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}$. From Table 6.8, the sum of the estimated flux contributions from the rings is $1.0 \mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}$. Thus the gcaling formula becomes

$$
\text { Fuel }=\left[\Phi n /\left(s^{\#} \mathrm{~cm}^{2}\right)\right] \neq\left[A \quad \mathrm{~cm}^{2}\right] /[190 \mathrm{n} /(\mathrm{s} * \mathrm{~kg})]
$$

for this data. This is identical to the formula for the simplest model discussed previously and values obtained with that formula were listed in Table 6.3. However, now there is some experimental evidence to indicate that these values are a reasonable lower limit to the amount of fuel. These values are also listed in Table 6.10 below.

Since the fuel debris was relatively thin, the PNL ${ }^{252}$ Cf measurements with slotted plates of three different materials with zero vertical separation between source and sensor (no plates covering the source) under the borated water cover are probably more applicable than the previously discussed measurement with 2 -inch vertical separation between source and sensor using a 2 -inch thick aluminum covering plate. These measurements were made only with the ${ }^{3} \mathrm{He}$ sensor. The ${ }^{3} \mathrm{He}$ count rates will be converted to estimated fluxes from the $1 \mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}$ planar source by multiplying the count rate by the area, dividing by the source strength and dividing by the average value of the count/flux ratio, 4.8, from Table 6.8. These measurements are listed in the following table.

TABLE 6.9. Flux Conversion of PNL ${ }^{3} \mathrm{He}$ Sensor Data

Offset inch	$\begin{aligned} & \mathrm{R} 2 \\ & \mathrm{CD} \end{aligned}$	$\begin{aligned} & \text { AREA } \\ & \mathrm{cm}^{2} \end{aligned}$	Al ${ }^{3} \mathrm{HeCnt}$ c/s	Al   EstFlux   $\mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}$	Fe ${ }^{3} \mathrm{HeCnt}$ c/s	Fe EstFLUX $\mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}$	${ }^{\mathrm{Cu}} \mathrm{HeCnt}$ c/s	Cu EstFluX $\mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}$
0	2.54	20	20,546	0.0132	22,891	0.0147	23,419	0.0150
2	7.62	162	15,314	0.0795	15,492	0.0804	18,349	0.0953
4	12.7	324	8,695	0.0903	7,547	0.0784	10,052	0.1044
6	17.8	486	4,465	0.0696	2,874	0.0448	3,870	0.0603
8	22.9	649	1,930	0.0401	1,465	0.0305	1,893	0.0394
10	27.9	811	1,295	0.0337	793	0.0206	908	0.0236
12	33.0	973	695	0.0217	429	0.0134	505	0.0157
14	38.1	1135	417	0.0152	227	0.0083	274	0.0100
16	43.2	1297	246	0.0102	137	0.0057	159	0.0066
18	48.3	1459	121	0.0057	105	0.0049	136	0.0064
20	53.3	1621	138	0.0072	88	0.0046	97	0.0050
			sum $=0.3864$		sum $=0.3063$		sum $=0.3817$	

Using an average value of $0.36 \mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}$ as the estimated flux the scaling formula becomes

$$
\text { Fuel }=2.8 *\left[\Phi \mathrm{n} /\left(\mathrm{s}^{*} \mathrm{~cm}^{2}\right)\right] *\left[\mathrm{Acm} \mathrm{Cl}^{2}\right] /[190 \mathrm{n} /\{\mathrm{s} * \mathrm{~kg})]
$$

Thus the total fuel is less than 8 kg in the A-OTSG and less than 7.1 kg in the B-OTSG.

The error estimates on this model are 1) $15 \%$ random measurement error associated with converting the ${ }^{3}$ He count to flux value, 2) possible $10 \%$ underestimation of the neutron flux due to neutrons escaping the tank, and 3) possible 5\% contribution to the flux from rings beyond our measurements. An estimate of the upper limit for the fuel from the pNL calibration measurements can be obtained by increasing the scaling factor by to $3.7[3,7=$ $2.8 * 1.15 * 1.1 * 1.05]$. This gives a more conservative scaling formula of

$$
\text { Fuel }=3.7 *\left[\$ \mathrm{n} /\left(\mathrm{s} * \mathrm{~cm}^{2}\right)\right] *\left[\mathrm{~A} \mathrm{~cm}^{2}\right] /[190 \mathrm{n} /(\mathrm{s} * \mathrm{~kg})]
$$

Thus the total fuel is less than 10.6 kg in the A-OTSG and less than 9.4 kg in the B-OTSG. This is still less than the 12.7 kg upper limit estimated with the debris volume model. The values for the fuel estimates with this error correction formula are listed in Table 6.10 below. The values in the table are based experimental PNL data using l) the conversion factor for the activation of copper coupons at PNL (no corrections for possible systematic error or change in fuel attenuation) and 2) the best estimates using ${ }^{3}$ He sensor data (increased to cover systematic error estimates).

TABLE 6.10. Summary of OTSG Neutron Flux Measurements with Fuel Estimates from the Mockup Experimental Data

LOCATION	Hed Aye FLUX $\mathrm{n} / \mathrm{sec} / \mathrm{cm}^{2}$	$\begin{aligned} & \text { FLUX } \\ & \text { LTV } \\ & \text { n/sec/c畋 } \end{aligned}$	DEBRIS AREA $\mathrm{cm}^{2}$	coppe   FUEL   EST   kg	direct   FUEL   LTV   kg	3 He corrected    FUEL FUEL   EST LTV   kg kg	
1a/J-leg	0.016(3)	0.020	1.154	0.93	1.16	3.43	4.3
2A/J-leg	0.009(3)	0.014	1.1 E 4	0.52	0.81	1.93	3.0
A/BOHL		0.006	2.5E4	--	0.79	-	2.9
A-OTSG				1.45	2.87	5.36	10.2
1B/J-leg	----	0.005	1.1 E 4	-	0.29	----	1.1
2B/J-leg	0.024 (3)	0.030	1.154	1.39	1.73	5.14	6.4
B/BOLL	--	0.004	2.5E4	----	0.53	--	1.9
B-OTSG				1.39	2.55	5.14	9.4

### 6.7 CONCLUSIONS

These residual fuel estimates agree with estimates based on debris volume (video evidence) and the gamma-ray measurements. In spite of modeling uncertainties, these estimates could not underestimate reality by more than the factor of two originally agreed to. In fact, The LTVs in the table may be considered reasonable upper limits without an additional multiplicative factor.

The neutron flux measurements indicate that the amount of residual fuel in the OTSGs is less than 10 kg each. This estimate should be scaled down to the best available debris area estimate.

## Appendix A

## FLUX.BAS LISTING

```
1 CLS
2 PRINT "BASIC PROGRAM TO CALCULATE THE FLUX SEEN BY A COUPON(S)"
10 INPUT "NAME OF DATA DISK [B]: ", DISK$
11 INPUT "NAME OF STRING [J]: ", ROPE$
12 FILENAM$ = DISK$ + ":" + ROPE$
14 DFILE$ = FILENAM$ + ".DAT"
15 PRINT "NAME OF INPUT DAT FILE [B:J.DAT]: ", DFILE$
16 OPEN DFILES FOR INPUT AS #1
17 PFILE$ = FILENAM$ + ".PRN"
18 PRINT "NAME OF OUTPUT PRN FILE [B:J.PRN]: ", PFILES
19 OPEN PFILES FOR OUTPUT AS #2
25 SFILE$ = FILENAM$ + ".SUM"
26 PRINT "NAME OF OUTPUT SUM FILE [B:J.SUM]: ", SFILE$
27 OPEN SFILE$ FOR OUTPUT AS #3
30 INPUT #1, TITLE$
31 PR1NT #2, "Data Set Title: "; TITLE$; TAB(50); "File: "; DFILE$
32 PRINT #2,
33 PRINT #3, "Data Set Title: "; TITLE$; TAB(50); "File: "; DFILE$
40 PRINT #3, CHR$(174); "RM100"; CHR$(175)
41 PRINT #3, CHR$(174); "TS6,15,22,27,38,48,56,68,78"; CHR$(175)
42 PRINT #3,
"
-"
45 PRINT #3, "LABEL COUPONS BKG CNT N-FLUX NF-ERR %-ERR FAP MDL-FLUX 2F-
ERR"
```



```
47 PRINT #3,
"
-"
50 DIM BKGM(2), BKGSEM(2), BKGSD(2), EFF(2)
51 INPUT "A or B OSTG, Packard [A,B,P] "; AS
52 IF A$ = "A" OR A$ = "a" THEN 60
53 IF A$ = "B" OR As = "b" THEN 70
54 IF A$ = "P" OR A$ = "p" THEN 80
58 GOTO 51
```

```
60, Background data for A-OTSG measurements
61 BKGM(1) = . 548 'Mean background rate--sensor #1 during A-OSTG
62 BKGM(2) = . 545 'Mean background rate--sensor #2 during A-OSTG
63 BKGSEM(1) = .014 'StdErr in Mean background rate--sensor #1
64 BKGSEM(2) = .01 'StdErr in Mean background rate--sensor #2
65 BKGSD(1) = .072 *StdDev in background distribution**sensor #1
66 BKGSD(2) = .047 'StaDev in background distribution--sensor #2
67 EFF(1) = .048 '19.3% of Cu-64 positron decay
68 EFF(2) = .048 ,
6 9 \text { GOTO 10.}
70 ' Background data for B-OTSG measurements
71 BKGM(1) \(=\), 594 'Mean background ratem-sensor \#1 during B-OSTG
72 BKGM(2) \(=.535\) 'Mean background rate--sensor \#2 during B-OSTG
73 BKGSEM (1) = . 016 'StdErr in Mean background rate--sensor \#1
74 BKGSEM(2) = . \(016{ }^{3}\) StdErr in Mean background rate--sensor \#2
75 BKGSD (1) = . 066 'StdDev in background distribution--sensor \#1
76 BKGSD (2) = . 066 'StdDev in background distribution--sensor \#2
77 EFF \((1)=.048 \quad\) ' 19.3 of Cu-64 positron decay
\(78 \mathrm{EFF}(2)=.048\),
79 G्वTO 100
80 *Background data for PACKARD-5
81 BKGM (1) \(=.12291 \quad\) 'Background rate sensor \#1
```



```
83 BKGSEM(1) =.0096 \({ }^{\text {TS }}\) StdErr in Mean background rate--sensor
\(84 \operatorname{BKGSD}(1)=.0096 \quad\) 'StdDev in background distribution--sensor \#1
85 EFF (1) \(=.05252 \quad\) ' 19.3 of Cu-64 positron decay
89 GOTO 100
```

100 DIM EFIX(2, 7) 'average relative efficiency for multi rod counts
$101 \operatorname{EFIX}(1,1)=1!: \operatorname{EFTX}(2,1)=1$ !
$102 \operatorname{EFIX}(1,2)=.974: \operatorname{EFIX}(2,2)=.989$
$103 \operatorname{EFIX}(1,3)=.981: \operatorname{EFIX}(2,3)=.983$
$104 \operatorname{EFIX}(1,4)=.965: \operatorname{EFIX}(2,4)=.967$
$105 \operatorname{EFIX}(1,5)=.943: \operatorname{EFIX}(2,5)=.946$
$106 \operatorname{EFIX}(1,6)=.904: \operatorname{EFIX}(2,6)=.906$
$107 \mathrm{EFIX}(1,7)=.981: \operatorname{EFIX}(2,7)=.876$

150 PRINT \#2; TAB(32); "SYSTEM \#A"; TAB(48); "SYSTEM \#B"
151 PRINT \#2, "Background Rate"; TAB(32); BKGM(1); TAB(48);
152 PRINT \#2, BKGM(2); TAB(64); "c/m"
153 PRINT \#2, "Std Err in Bkg estimate"; TAB( 32 ); BKGSEM(1); TAB(4\#);
154 PRINT \#2, BKGSEM(2); TAB(64); "c/m"
155 PRINT \#2, "Std Dev in Bkg distribution"; TAB(32); BKGSD(1); TAB(48);
156 PRINT \#2, BKGSD(2); TAB(64); "c ${ }^{\circ} \mathrm{m}^{\prime \prime}$

```
157 PRINT #2, "Sensor Efficiency for Cu-64"; TAB(32); EFF(1); TAB(48);
158 PRINT #2, EFF(2); TAB(64); "ct/decay"
159 PRINT #2,
170 LAMDA = . 054583 'decay constant of Cu-64 in decays/hour
171 PRINT #2, "Cu-64 Decay constant ="; LAMDA; " decays/hour"
180 CROSS = 4.4E-24 'cross section for Cu-63 in sq cm
181 PRINT #2, "Cu-63 Thermal Neutron Cross section ="; CROSS; " cm""
185 NATOM = 1.875E+23 'number of atoms in a standard coupon
186 PRINT #2, "Atoms per standard Copper coupon ="; NATOM; "Atoms"
190 FAPMDL# = . 001 'FAP level for MDL
191 PRINT #2, "FAP for minimun detectable level = ";
192 PRINT #2, USING "#.########"; FAPMDL#
195 PRINT #2,
```



```
210 ' File input of total time exposed to neutron flux in hours
220 INPUT #1, Tact
230 ' **
240 PRINT "Total activation time ="; Tact; " Hours"
250 PRINT #2, "Activated for"; Tact; "hours";
300 FRACT = 1 - EXP(-LAMDA * Tact) 'Fraction of maximum activity made
310 PRINT #2, " producing"; FRACT * 100; "% of maximum activity"
```



```
510 ' File input of clock time [hours,minute] removed from neutron flux
520 INPUT #1, THR, TMIN
530 ' **
540 PRINT "Time activation ended: "; THR; ":"; TMIN
550 PRINT #2, "Activation ended at [hr:min] ";
551 PRINT #2, USING "##"; THR;
552 PRINT #2, ":";
553 PRINT #2, USING "##"; TMIN
560 TOUT = THR + TMIN / 60! 'Time in hours
600 'Loop back point
610 IF EOF(1) THEN 6000 'Quit if input file empty
650 PRINT #2,
660 PRINT #2,
"==="
670 PRINT #2,
700, *##**
701 ' File input of clock time [hours,minute] at start of count
702 , NOTE: 24 hours added for each day after end of activation
703 ' File input of count duration in seconds
710 INPUT #1, THR, TMIN, Tcnt
```



```
720 Tdecay = THR + TMIN / 60 - TOUT 'Time (hoursl since removal from flux
730 PRINT "Counting started at:"; THR; ":"; TMIN; " for"; Tent; "sec"
750 PRINT #2, "Counting started at ";
751 PRINT #2, USING "##"; THR;
752 PRINT #2, ":";
753 PRINT #2, USING "##"; TMIN;
754 PRINT #2, " which was ";
755 PRINT #2, USING "###.##"; Tdecay;
756 PRINT #2, " hours after the end of activation"
770 TcntM = Tcnt / 60: 'Convert time in seconds to minutes
780 TentH = Tent / 3600! 'Convert time in seconds to hours
790 PRINT #2, "Duration of count was"; Tcnt; "seconds or"; TcntM; "minutes"
810 CDFRAC = EXP(-LAMDA * Tcnth) 'Time units are hours here
820 DDFRAC = EXP(-LAMDA * Tdecay)
830 PRINT #2, "Activity at start of count was ";
831 PRINT #2, USING "###.####"; DDFRAC * 100;
832 PRINT #2, "* of original activity."
840 PRINT #2, "Activity at end of count was ";
841 PRINT #2, USING "###.####"; CDFRAC * DDFRAC * 100;
842 PRINT #2, "X ol original activity."
850 PRINT #2, " or ";
851 PRINT #2, USING "###.####": CDFRAC * 100;
852 PRINT #2, "% of activity at start of count."
1300 FOR SYS = 1 TO 2
1301 IF BKGM(SYS) = 0 THEN 4200
1305 PRINT #2, ":
1306 PRINT #2, "
-."
1307 PRINT #2, "*
1320 PRINT "Systeष #"; SYS;
1400, ***
1401 'File input of count title string in quotes "Name"
1402 'File input of number of coupons counted
1403 ' File input of ras count
1410 INPUT 41, SAMP$, NCOUP, CNT
1420 * ***
1430 PRINT "Title: "; SAMPS; " with"; NCOUP; "coupons CNT="; CNT;
1450 PRINT #2, "System #"; CHR$(SYS + 64); " with"; NCOUP; "coupons";
1460 PRINT 2, TAB(30); SAMPS; TAB(60); TITLES
1470 PRINT #2,
1480 PRINT #2, "Coincidence"; TAB(16); "Count"; TAB{32}; "Background";
1481 PRINT #2, TAB(48); "Net Signal"
1500 BKG = BKGM(SYS) * TcntM *mean background estimate for count
```

```
1510 SDBKG = BKGSEM(SYS) * TcntM 'standard error in mean background estimate
1520 NET = CNT - BKG 'Net Signal count
1530 PRINT #2, "Counts"; TAB(16); CNT; TAB(32); BKG; TAB(48); NET;
1531 PRINT #2, TAB(64); " counts"
1600 RCNT = CNT / TcntM 'Rates in cts/min
1610 RBKG = BKG / TentM
1620 RNET = NET / TcntM
1630 PRINT #2, "Rates"; TAB(16); RCNT; TAB(32); RBKG; TAB(48); RNET;
1631 PRINT #2, TAB(64); " c/m"
1700 SQCNT = SQR(CNT) 'Error estimates
1701 SQBKG = SQR(BKG)
1702 SQNET = SQR(CNT + SDBKG * SDBKG) 'Includes small error in mean bkg est
1703 SQZER = SQR(BKG + SDBKG * SDBKG) 'Includes small error in mean bkg est
1710 ECNT = SQCNT / TcntM 'Rate errors
1720 EBKG = SDBKG / TcntM
1730 ENET = SQNET / TcntM
1740 PRINT #2, "Rate Error"; TAB(16); ECNT; TAB(32); EBKG; TAB(48);
1741 PRINT #2, ENET; TAB(64); " c/m"
1750 PCNT = 100! * ECNT / RCNT 'Conversion to percent error estimates
1760 PBKG = 100! * EBKG / RBKG
1770 PNET = 0!
1775 IF RNET <> O THEN PNET = 100! * ENET / ABS(RNET)
1780 PRINT #2, "Z Err"; TAB(16); PCNT; "%"; TAB(32); PBKG; "$"; TAB(48);
1781 PRINT #2, PNET; "x"
1790 PRINT #2,
1900 MDTEST# = 1! - FAPMDL#' Require a FAP < 0.001 for MDL
1902 MDCNT = 0 'Minimum Detection CNT
1910 X1 = 5 * SQBKG + BKG
 'Find limit for the Poisson sum loop
1911 IF X1 < CNT THEN X1 = CNT
1912 IF X1 < 20 THEN X1 = 20
1920 PM# = BKG
'Poisson mean
1921 PO# = EXP(-PM#) '1st term in sum
1925 PSUM# = PO# 'Poisson sum
1927 PFAP# = 0 'False alarm probability
1930 FOR X = 1 TO X1 'LOOP START
1940 PO# = PO# * PM# / X
1945 ' LPRINT X, PO#, PSUM# + PO#, 1 - PSUM# '<<<<<<<< Debug -- check P,C,D
1950 IF X = CNT THEN PFAP# = 1 - PSUM#
1960 IF PSUM# < MDTEST# THEN MDCNT = X
1965 PSUM# = PSUM# + PO#
1980 NEXT X 'LOOP END
1982 MDCNT = MDCNT + 1 'Minimum Detection CNT
1985 ' RETURN '<<<<<<< Debug return for FAP LOOP test at }800
1990 PRINT #2, "Poisson FAP ="; PFAP#, "MDCNT="; MDCNT, "X1="; X1
```

```
1995 XFAP = PFAP#
1996 PRINT XFAP
```

```
2100 SIGNIF = NET / SQBKG
2110 PRINT #2, "Signal significant at";
2111 PRINT #2, USING "####.##"; SIGNIF;
2112 PRINT #2, "-sigma -- Poisson using sqr(bkg)";
2113 IF SIGNIF > 3 THEN PRINT #2, " <<<<<<";
2114 PRINT #2,
2210 SIGNIF = NET / (BKGSD(SYS) * TcntM)
2220 PRINT #2, "Signal significant at";
2221 PRINT #2, USING "####.##"; SIGNIF;
2222 PRINT #2, "-sigma -- Normal using SD of bkg";
2223 IF SIGNIF > 3 THEN PRINT #2, " <<<<<<";
2224 PRINT #2,
2225 PRINT #2,
```


2301 ** FLUX CALCULATION START **
2302 , ********************************
2305 EFFEC = EFF(SYS)
2310 IF NCOUP <= 7 THEN EFFEC = EFFEC $\#$ EFIX(SYS, NCOUP)
2320 PRINT \#2, "Sensor efficiency with"; NCOUP; "coupons="; EFFEC * 100; "x"
3030 N64S1 = 1 ! / (EFFEC * (1! - CDFRAC)) 'Atoms per net count
3040 N64S $=$ N64S1 * NET 'Atoms with this net count
3050 ACTX $=$ LAMDA * N64S / 60! 'Lamda(d/hr) ACTX(d/m)
3060 PRINT \#2, "Cu-64 at start of count $=$ '": N64S; "atoms";
3070 PRINT \#2. TAB(55); ACTX; "d/min"

3100 N64A1 = N64S1 / DDFRAC	'Atoms per net count
3110 N64A $=$ N64S / DDFRAC	'Atoms with this net count
3120 ACT $=$ LAMDA * N64A / 60?	'Lamda (d/hr) ACTX (d/m)
3130 PRINT \#2, "Cu-64 at 0TSG exit	="; N64A; "atoms";
3140 PRINT \#2, TAB(55); ACT; "d/min"	

3200 N $63=$ NATOM $*$ NCOUP
3210 LAMDAS $=$ LAMDA / 3600! ${ }^{2}$ Lamdas(d/s)
3220 FLUXO $=$ LAMDAS / (CROSS * N63 * FRACT)
3230 FLUX $=$ FLUXO * N64A 'Flux to produce this net count
3240 FLUX1 $=$ FLUXO $*$ N64A1 'Flux to produce one net count
3250 PRINT \#2, "Neutron flux seen $\quad=" ; ~ F L L X ; ~ " n e u t r o n s /\left(s e c o n d * c a^{2}\right) "$

$3291^{*}$ F* FLUX CALCULATION END ${ }^{*}$

3300 PFLUX $=$ PNET ' $\%$ err in flux is same as $\%$ err in net count

```
3310 PFLUXN = PFLUX 'Extra 5% error added for multiple coupon counting
3311 IF NCOUP > 1 THEN PFLUXN = SQR(PFLUXN * PFLUXN + 25)
3320 EFLUX = ABS(FLUX) * PFLUX / 100!
3330 EFLUXN = ABS(FLUX) * PFLUXN / 100!
3335 EFLX = EFLUXN
3336 PFLX = PFLUXN
3338 2FLX = FLUX1 * SQZER 'Flux error if only background seen
3340 EFLUX1 = FLUX1 * SQNET
3341 IF EFLUX1 = EFLUX THEN 3350
3342 EFLX = EFLUX1
3345 PRINT #2, "Neutron flux error ALT ="; EFLUX1; "n/(s*cm2)"
3350 PRINT #2, "Neutron flux error ="; EFLUX; "n/(s*cmn)";
3351 PRINT #2, TAB(55); "Flux error="; PFLUX; "X"
3360 IF NCOUP = 1 THEN 3380
3370 PRINT #2, "plus 5% efficiency error="; EFLUXN; "n/(s*cm
3371 PRINT #2, TAB(55); "Flux error="; PFLUXN; "x"
3380 ' Extra 5% error added in quadrature for multiple coupon counting"
3390 PRINT #2, "Zero neutron flux error ="; ZFLX; "n/(s*cп2)"
3400 MDNET = MDCNT - BKG 'Minimum detectable net count
3405 MDFLUX = MDNET * FLUXI 'Minimum detectable neutron flux
3410 PRINT #2, "Minimum Detectable Flux ="; MDFLUX; "n/(s*cm2)"
3420 PRINT #2, "Minimum detection count ="; MDCNT; "cts";
3430 PRINT #2, " net count needed = "; MDNET; "cts"
4000 PRINT #3, SAMP$; CHR$(9);
4010 PRINT #3, USING "###.##"; BKG;
4011 PRINT 3, CHR$(9);
4020 PRINT #3, USING "####"; CNT;
4021 PRINT #3, CHR$(9);
4030 PRINT #3, USING "####.####"; FLUX;
4031 PRINT #3, CHR$(9);
4040 PRINT #3, USING "####.####"; EFLX;
4041 PRINT #3, CHR$(9);
4050 PRINT #3, USING "#####"; PFLX;
4051 PRINT #3, "$"; CHR$(9);
4060 PRINT #3, USING "#.#########"; PFAP#;
4061 PRINT #3, CHR$(9);
4070 PRINT #3, USING "##.####"; MDFLUX;
4080 PRINT #3, CHR$(9);
4081 PRINT #3, USING "####.####"; 2FLX
4 2 0 0 ~ N E X T ~ S Y S ~
```

5100 GOTO 600

6000 CLOSE \#1 'End of program -- close up files used

```
6010 CLOSE #%
6020 CLOSE 43
6100 STOP
8000 WIDTH LPRINT 100
8005 LPRINT "Test of the Poisson FAP loop"
8010 FAPMDL* \(=.001\) 'FAP level for MDL
8020 LPRINT "FAP for minimum detectable level \(=\) "; FAPMDL\#
8030 BKG \(=25\)
8040 SQBKG \(=\operatorname{SQR}(B K G)\)
\(8050 \mathrm{CNT}=34\)
8080 GOSUB 1900
8100 LPRTNT " BKG ="; BKG, " CNT="; CNT
8110 LPRINT "Poisson PAP \(="\); PFAP\#, "MDCNTz"; MDCNT, "X1="; X1
8120 STOP
```


## Appendix B

## COMB. BAS LISTING

```
10 CLS
15 PRINT "BASIC PROGRAM TO CALCULATE WEIGHTED MEAN AND COMBINED FAPS"
17 WIDTH LPRINT 96
20 INPUT "NAME OF DATA DISK [B]: ", DISK$
21 INPUT "NAME OF INPUT FILE [DATA]: ", INFIL$
25 FILENAM$ = DISK$ + ":" + INFIL$
30 DFILE$ = FILENAM$ + ".DAT"
31 PRINT "NAME OF INPUT DAT FILE [B:DATA.DAT]: ", DFILE$
32 OPEN DFILE$ FOR INPUT AS #1
35 PFILE$ = FILENAM$ + ".CMB"
36 PRINT "NAME OF OUTPUT PRN FILE [B:DATA.CMB]: ", PFILE$
37 OPEN PFILE$ FOR OUTPUT AS #2
40 DIM LA$(10)
41 DIM BKG(10), CNT(10)
4 2 \text { DIM FLX(10), EFL(10), PFL(10)}
43 DIM FAP(11), MDL(10), ZFE(10)
4 5 \text { DIM FL\$(10), VL(10)}
4 6 ~ D I M ~ P (1 1) ~
47 NDF = 9'Number of data fields
50 T$ = " " 'TAB character to separate fields
55 LBCNT = 0
60 FAPMDL# = .001 'FAP level for MDL
61 PRINT #2, "FAP for minimum detectable level = ";
62 PRINT #2, USING "#.########"; FAPMDL#
70 PRINT #2, CHR$(174); "RM100"; CHR$(175);
71 PRINT #2, CHR$(174); "TS6,15,22,27,38,48,56,68,80"; CHR$(175)
72 PRINT #2,
"-
75 PRINT #2, "LABEL COUPONS BKG CNT N-FLUX N-ERR %-ERR FAP MDL-FLUX"
76 PRINT #2, " n/(s*sqcm) n/(s*sqcm) n/(s*sqcm)"
78 PRINT #2,
"
_"

\footnotetext{
'Number of measurements in set
}
```

110 IF LBCNT > O THEN 200
120 LBCNT = LBCNT + 1
140 "LPRINT "LABEL COUPONS BKG CNT N-FLUX N-ERR %-ERR FAP MDL-FLUX"
150 'LPRINT * n/(s*sqca) n/(s*sqca) n/(s*sqca)"
200 IF EOF(1) THEN 6000 {quit if input file empty

```

```

220, File input of total time exposed to neutron flux in hours
230 INPUT \#1, IS\$

```

```

250 NL = LEN(IS\$)
260 IF NL < I THEN 1000
280 IF NL < 15 THEN 200
$310 \mathrm{NF}=0$
320 N1 = 1
330 WHILE N1 < NL
340 N2 $=\operatorname{INSTR}(N 1, ~ I S \$ ; T \$)$
350 IF N2 $=0$ THEN N2 $=\mathrm{NL}$
$360 \mathrm{NF}=\mathrm{NF}+1$
370 FLS(NF) $=\mathrm{MID}(1 S \$, N 1, \mathrm{~N} 2-\mathrm{N} 1)$
$380 \mathrm{~N} 1=\mathrm{N} 2+1$
390 WEND
400 IF INSTR(IS\$; "Title") $=0$ THEN 450
405 GOSUB 8000
410 PRINT \#2, CHR\$(174); "BB"; CHR\$(175); CHR\$(174); "NB"; CHR\$(175)
430 ' LPRINT IS $\$$
440 LBCNT $=0$
450 PRINT \#2, IS\$
455 IF FL\$ (1) $=$ "LABEL" THEN 100
460 IF NF $\Leftrightarrow$ NDF THEN 100 'Wrong number of fields ends the set - NO PROCESS
470 ' LPRINT IS\$
490 GOTO 700

```
```

500 FOR I = 1 TO NF 'Rezove any leading or trailing spaces

```
500 FOR I = 1 TO NF 'Rezove any leading or trailing spaces
510 V$ = FL$(I) *if necessary for #AL function
510 V$ = FL$(I) *if necessary for #AL function
520 WHILE LEFT$(V$, 1) = " 'Remove any leading spaces
520 WHILE LEFT$(V$, 1) = " 'Remove any leading spaces
530 V$ = MID$(V$; 2)
530 V$ = MID$(V$; 2)
540 WEND
540 WEND
550 WHILE RIGHT$(#$: LEN(V$)) = * " 'Rewove any trailing spaces
550 WHILE RIGHT$(#$: LEN(V$)) = * " 'Rewove any trailing spaces
560 V $ = LEFT$(#$, LEN(#$) - 1)
560 V $ = LEFT$(#$, LEN(#$) - 1)
570 WEND
570 WEND
580 FL$(I) = V$
580 FL$(I) = V$
590 NEXT I
590 NEXT I
600 FOR I = 1 TO NF
```

600 FOR I = 1 TO NF

```
```

610 PRINT I, "["; FL$(I): "]", VL(I)
6 2 0 ~ N E X T ~ I ~
700 FOR I = 1 TO NF 'Evaluate the fields
720 VL(I) = VAL(FL$(I))
750 NEXT I
800 NM = NM + 1 'Number of measurements in set
810 LAs(NM) = FL\$(1)
820 BKG(NM) = VL(2)
830 CNT(NM) = VL(3)
840 FLX(NM) = VL(4)
850 EFL(NM) = VL(5)
860 PFL(NM) = VL(6)
873 FAP(NM) = VL(7)
880 MDL(NM) = VL(8)
890 2FE(NM) = VL(9)
900 GOTO 200
'Loop back for more input
'Calculate combined values for the set
1000 IF NM \& 2 THEN 100 'Sum of BKGs
1020 SCNT = 0 'Sun of CNTs
1030 SFLX = 0 'Weighted Sum of FLXs
1040 SWTS = 0 'Sum of WTs
1045 SZHTS = 0 'Sum of WTa for ZFEs
1050 SF1% = 0 'Sum of FLXs
1060 SF2\# = 0 'Sun of (FLX*FLX)s
1090 ' LPRINT NM; "Measurements in this set"
1095 LBCNT = 0
1100 FOR I = 1 TO NM
1110 SBKG = SBKG + BKG(I)
1120 SCNT = SCNT + CNT (I)
1130 WT = EFL(I)
1131 IF WT = 0 THEN WT = 1E-10
1132 WT = 1! / (WT * WT)
1140 SFLX = SFLX + WT * FLX(1)
1150 SWTS = SHTS + WT
1151 2WT = 2FE(I)
1152 IF ZWT = 0 THEN 2WT = 1E-10
1153 ZHT = 1! / (ZWT * 2HT)
1155 S2WTS = SZWTS + ZWT
1160 SF1\# = SF1\# + FLX(1)
1165 SF2\# = SF2\# + FLX(I) * FLX(I)
1170 3EXT I
1180 GNM = GNM + NM 'Save for weighted average of full set
1181 GSFLX = GSFLX + SFLX

```
```

1182 GS㛤S = GSWTS + SWTS
1183 GSZWTS = GSZWTS + SZWTS
1185 GSF1\# = GSF1\# + SF1\#
1186 GSF2\# = GSF2\# + SF2\#
1195 IF SBKG <= 0 THEN SBKG = 1E-10
1198 SQBKG = SQR(SBKG)
1200 FLUX = SFLX / SWTS
1210 EFLX = 1: SQR(SWTS)
1215 PFLX = ABS(100 * EFLX / FLUX)
1216 2FLX = 1! SQR(SZWTS)
1220 PRINT \#2, "Weighted Average"; T$; T$;
1221 PRINT \#2, USING "\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
1222 PRINT \#2; T$;
1223 PRINT #2; USING "#####,######"; EFLX;
1224 PRINT #2, T$;
1225 PRINT \#2, USING "\#\#\#\#\#\#\#\#\#; PFLX;
1226 PRINT \#2, "理"; T$;
1230 X = FLUX / EFLX
1231 GOSUB 7000 'Calculate FAP baged on N(0,1) with NF-ERR
1232 WFAP# = Q#
1235 WMDL = 3.092 EFLX
1241 PRINT #2, USING "#.##茾年####### NPAP#;
1242 PRINT #2, T$;

```

```

1247 PRINT \#2; T$;
1249 PRINT #2, USING "######################
1250 X = FLUX / Z FLX
1251 GOSUB 7000 'Galculate FAP based on N(0, 1) with ZF-ERR
1252 WZFAP# = Q#
1255 WZMDL = 3.092 * ZFLX
1270 PRINT #2, "FAP using |td 0-Flux error"; T$; T$; T$;
1271 PRINT \#2, USING "\#.\#\#\#\#\#\#\#\#\#\#\#\#\#\#; WZFAP\#;
1272 PRINT \#2, T\$;
1275 PRINT \#2, USING "\#\#\#\#\#\#\#\#\#\#\#\#\#\#NDL
1290 ' LPRINT "Weighted Mean Flux ="; FLUX; TAB(40);
1291 'LPRINT X; "sigma N(0,1) FAP =*; WEAP"
1292 * LPRINT "Error in Mean Flux ="; EFLX; TAB(40); PFLX; "㐌"
1293 * LPRINT "3.1-sigma MDL Flux ="; WMDL;
1294 ' LPRINT TAB 40); "4.66msigma MDL Flux =*; WMDL * 4.66 / 3.1
1299 * LPRINT
1300 AVEFLX = SF1\# / NM
1310 NNX = NM - 1
1311 IF NM < 2 THEN NMX = 1
1320 S\# = {SF2\# - SF1\# * SF1\# / NM) / NMX

```
```

1321 SEFLUX = S\#
1325 IF SEFLUX > O THEN SEFLUX = SQR(SEFLUX)
1330 SEAVEF = SEFLUX / SQR(NM)
1340 PEAVEF = ABS(100 * SEAVEF / AVEFLX)
1350 PRINT \#2, "Normal Average"; T$; T$; T$;
1351 PRINT #2, USING "####.####"; AVEFLX;
1352 PRINT #2, T$;
1353 PRINT \#2, USING "\#\#\#\#.\#\#\#\#"; SEAVEF;
1354 PRINT \#2, T$;
1355 PRINT #2, USING "#####"; PEAVEF;
1356 PRINT #2, "%"; T$;
1360 X = AVEFLX / SEAVEF
1361 GOSUB 7000 'Calculate FAP based on N(0,1)
1362 SAFAP\# = Q\#
1365 SAMDL = 3.092 * SEAVEF
1370 PRINT \#2, USING "\#.\#\#\#\#\#\#\#\#\#"; SAFAP\#;
1371 PRINT \#2, T\$;
1375 PRINT \#2, USING "\#\#.\#\#\#\#"; SAMDL
1380 ' LPRINT "Mean Flux ="; AVEFLX; TAB(40);
1381 ' LPRINT X; "sigma N(0,1) FAP ="; SAFAP\#
1385 , LPRINT "Std Dev in Flux ="; SEFLUX
1386 ' LPRINT "Std Error in nean ="; SEAVEF; TAB(40); PEAVEF; "\chi"
1388 ' LPRINT "3.1-sigma MDL Flux ="; SAMDL;
1389 , LPRINT TAB(40); " 4.66-sigma MDL Flux ="; SAMDL * 4.66 / 3.1
1390 ' LPRINT

```
```

1400 MDTEST\# = 1! - FAPMDL\# 'Require a FAP < 0.001 for MDL

```
1400 MDTEST# = 1! - FAPMDL# 'Require a FAP < 0.001 for MDL
1402 MDCNT = 0 'Minimum Detection CNT
1402 MDCNT = 0 'Minimum Detection CNT
1410 X1 = 5 * SQBKG + SBKG 'Find limit for the Poisson sum loop
1410 X1 = 5 * SQBKG + SBKG 'Find limit for the Poisson sum loop
1411 IF X1 < SCNT THEN X1 = SCNT
1411 IF X1 < SCNT THEN X1 = SCNT
1412 IF X1 < 20 THEN X1 = 20
1412 IF X1 < 20 THEN X1 = 20
1420 PM# = SBKG 'Poisson mean
1420 PM# = SBKG 'Poisson mean
1421 PO# = EXP(-PM#) '1st term in sum
1421 PO# = EXP(-PM#) '1st term in sum
1425 PSUM# = 上卜## 'Poisson sum
1425 PSUM# = 上卜## 'Poisson sum
1427 PFAP苂 = 0 'False alarm probability
1427 PFAP苂 = 0 'False alarm probability
1430 FOR X = 1 TO X1 'LOOP START
1430 FOR X = 1 TO X1 'LOOP START
1440 PO# = PO# * PM# / X
1440 PO# = PO# * PM# / X
1450 IF X = SCNT THEN PFAP# = 1 - PSUM#
1450 IF X = SCNT THEN PFAP# = 1 - PSUM#
1460 IF PSUM# < MDTEST# THEN MDCNT = X
1460 IF PSUM# < MDTEST# THEN MDCNT = X
1465 PSUM# = PSUM# + PO#
1465 PSUM# = PSUM# + PO#
1480 NEXT X 'LOOP END
1480 NEXT X 'LOOP END
1482 MDCNT = MDCNT + 1
1482 MDCNT = MDCNT + 1
'Minimum Detection CNT
'Minimum Detection CNT
1500 ' LPRINT "SBKG="; SBKG; " SCNT="; SCNT; " MDCNT="; MDCNT
1510 ' LPRINT "All one count Poisson FAP ="; PFAP#
1550 PRINT #2, "Combined Count"; T$;
1560 PRINT #2, USING "###.##"; SBKG;
```

```
1561 PRINT #2, T$;
```



```
1563 P年INT #2, T$; T$; T$;
1570 PCNT = 0
1571 X = ABS(SCNT - SBKG)
1572 IF X <> O THEN PCNT = SQR(SCNT) / X
1575 PRINT #2, USING "年然年"; PFLX;
1576 PRINT #2, "%"; T$;
```



```
1700 IF NM < 2 THEN 1790 'Order the FAPs
1710 FOR 1 = 1 TO NM - 1
1720 FOR J = I + 1 TO NM
1730 IF FAP(I) >= FAP(J) THEN 1770
1740 X = FAP(I)
I750 FAP(I) = FAP(J)
1760 FAP(J) = X
1170 NEXT J
1780 NEXT I
1790 'FAPs no in order largest to smallest
1800 FAP(NM + 1) = 0 'Convert FAPs to Ps
1810 FAP(0) = 1
1820 PRODFAP = 1
1830 FOR I = I TO NM
1840 P(I) = FAP(I) - FAP(I + 1)
1850 PRODFAP = PRODFAP * FAP(I)
1860 NEXT I
1910 P1 = P(1)
1920 P2 = P(2)
1930 P3 = P(3)
1940 P4 = P(4)
1950 P5 = P(5)
1960 P6 = P(6)
1970 MTM P(7)
1980 P8 = P(8)
1990 P9 = P(9)
```

2000 ON NM GOTO 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900
2010 ' LPRINT "NEED TO PROGRAM FOR NM="; NM
2020 CFAP $=1$
2030 GOTO 3000
2100 * 1 measurement in the set
2110 CFAP = FAP(1)
2190 GOTO 3000

```
2200 ' 2 measurements in the set
```

2210 CFAP $=$ P2 * P2 + 2 * P1 * P2
2290 GOTO 3000

```
2300 ' 3 measurements in the set
2310 C# = P3 * P3
2320 C# = C# + 3 * (P1 * P3 + P2 * P3 + P2 # P2)
2330 C# = C# + 6 * P1 * P2
2380 CFAP = C* * P3
2390 GOTO 3000
```

2400 ' 4 measurements in the set

```
2410 C# = P4 ^ 3
2420 C# = C# + 4 * (P1 * P4 ^ 2 + P2 * P4 ^ 2 + P3 * P4 ^ 2 + P3 ^ 3)
2430 C# = C# + 6 * (P2 ^ 2 * P4 + P3 ^ 2 * P4)
2440 C* = C# + 12 * (P1 * P2 * P4 + P1 * P3 * P4 + P1 * P3 ^ 2)
2450 C* = C# + 12 * (P2 * P3 * P4 + P2 * P3 * 2 + P2 * 2 * P3)
2460 C# = C# + 24 * P1 * P2 * P3 * P4
2480 CFAP = C# * P4
2490 GOTO 3000
```

```
2500 , 5 measurements in the set
2510 C# = P5 * 5
2520 C# = C# + 5 * P1 * P5 ` 4 + 5 * P2 * P5 ^ 4 + 5 * P3 * P5 ` 4
2521 C# = C# + 5 * P4 * P5 ^ 4 + 5 * P4 * 4 * P5
2530 C# = C# + 10 * P2 ^ 2 * P5 ^ 3 + 10 * P3 ^ 2 * P5 ^ 3
2531 C# = C# + 10 * P4 ^ 2 * P5 * 3
2532 C# = C# + 10 * P3 ^ 3 * P5 ^ 2 + 10 * P4 ` 3 * P5 * 2
2540 C# = C# + 20 * P1 * P2 * P5 ^ 3 + 20 * P1 * P3 * P5 ^ 3
2541 C# = C# + 20 * P1 * P4 * P5 ` 3 + 20 * P1 * P4 ^ 3 * P5
2542 C# = C# + 20 * P2 * P3 * P5 ^ 3 + 20 * P2 * P4 * P5 ^ 3
2543 C# = C# + 20 * P2 * P4 ` 3 * P5 + 20 * P3 * P4 * P5 ^ 3
2544 C* = C# + 20 * P3 * P4 ^ 3 * P5
2550 C^ = C# + 30 * P1 * P3 ` 2 * P5` 2 * 30 * P1 * P4 ^ 2 * P5 ^ 2
2551 C# = C# + 30 * P2 * P3 ^ 2 * P5 ^ 2 + 30 * P2 * P4 ^ 2 * P5 ` 2
2552 C# = C# + 30 * P2 ` 2 * P3 * P5 ^ 2 + 30 * P2 ` 2 * P4 * P5` 2
2553 C# = C# + 30 * P2 * 2 * P4 ^ 2 * P5 + 30 * P3 * P4 ^ 2 * P5 * 2
2554 C# = C# + 30 * P3 ^ 2 * P4 * P5 ^ 2 + 30 * P3 ^ 2 * P4 ^ 2 * P5
2560 C# = C# + 60 * P1 * P2 * P3 * P5 ^ 2 + 60 * P1 * P2 * P4 * P5 ` 2
2561 C# = C# + 60 * P1 * P3 * P4 * P5 ^ 2 + 60 * P1 * P2 * P4 ` 2 * P5
2562 C# = C# + 60 * P1 * P3 * P4 * 2 * P5 + 60 * P1 * P3 ^ 2 * P4 * P5
2563 C* = C# + 60 * P2 * P3 * P4 * P5 ^ 2 + 60 * P2 * P3 * P4 ^ 2 * P5
2564 C* = C* + 60 * P2 * P3 ` 2 * P4 * P5 + 60 * P2 ` 2 * P3 * P4 * P5
2570 C# = C# + 120 * P1 * P2 * P3 * P4 * P5
2580 CFAP = C#
2590 GOTO 3000
```

```
2600 , 6 measurements in the set
2700 , % measurements in the set
2800 , 8 measurements in the set
2900 , 9 measurements in the set
2910 ' LPRINT "NEED TO PROGRAM FOR NM="; NM
2920 CFAP = 1
2990 GOTO 3000
3000 PRINT #2, "Combined FAP"; T$; T$; T$; T$; T$; T$;
3050 PRINT #2, USING "#.#########"; CFAP
3052 PRINT #2,
3100 ' LPRINT "Correctly Combined FAP ="; CFAP
3110, LPRINT "Product of the FAPs ="; PRODFAP
3170 ' LPRINT
3180 , LPRINT "--
3190 ' LPRINT
4000 GOTO 100
5000 STOP
6000 CLOSE #1 'End of program -- close up files used
6010 CLOSE #2
6020 PRINT "END OF FILE STOP"
6 1 0 0 ~ S T O P
7000 'Subroutine to find Normal N(0,1) FAP based on A&S 26.2.17
7010 'Call with X = (X-MEAN)/SIGMA
7020 'Error < 7.5E-8 for 0 <= X < infinity
7030 XX = ABS(X)
7100 SQ2PI = 2.5066283#'sqr(2#PI)
7110 2 = EXP(-XX * XX / 2) / SQ2PI
7120 T# = 1! / (1! + . 2316419# * XX)
7130 T2# = T## T#
7140 T4# = T2# * T2#
7150 Q# = . 31938153# * T# - .356563782# * T2# + 1.781477937# * T# * T2#
7160 Q# = Q# - 1.821255978# * T4# + 1.330274429# * T# * T4#
7170 Q# = 2 * Q#
7180 IF X > O THEN }719
7181 Q# = 1 - Q#
7190 RETURN
```

7200 'Subroutine to find $X$ given a $F A P=Q(X)$ based on A\&S 26.2.23

```
7210 'Call with Q=FAP
7220 'Error < 4.5E-4 for 0<FAPく=.5
7230 X = 0
7240 IF Q > . 5 THEN 7390
7250 IF Q <= 0 THEN Q = 1E-09
7300 QQ# = Q
7303 QL# = LOG(*Q#)
7305 T2# = -2! * QL#
7310 T# = SQR(T2#)
7320 XD# = 1! + 1.432788 * T# + . 189269 * T2# + .001308 * T# * T2#
7330 XN# = 2.515517 + . 802853 * T# + .010328 * T2#
7340 X = T# - XN# / XD#
7355 PRINT "QQ#="; QQ#;" QL#Z"; QL#; " T#="; T#; " T2#="; T2#;" X="; X
7390 RETURN
8000 'GRAND WEIGHTED AVERAGE FOR TITLED SET
8100 IF GNM < 2 THI 9400 'Calculate combined values for the set
8200 FLUX = GSFLX / GSWTS
8210 EFLX = 1! / SQR(GSWTS)
8215 PFLX = ABS(100 * EFLX / FLUX)
8218 GZFLX = 1! / SQR(GS2WTS)
8220 PRINT #2, "Wtd Ave for set "; T$; T$;
8221 PRINT #2, USING "####.####"; FLUX;
8222 PRINT #2, T$;
8223 PRINT #2, USING "####.####"; EFLX;
8224 PRINT #2, T$;
8225 PRINT #2, USING "#####"; PFLX;
8226 PRINT #2, "\chi"; T$;
8230 X = FLUX / EFLX
8231 GOSUB 7000 'Calculate FAP based on N(0,1)
8232 WFAP# = Q#
8235 WMDL = 3.092 * EFLX
8260 PRINT #2, USING "#.##########; WFAP#;
8261 PRINT #2, T$:
8270 PRINT #2, USING "##.####"; WMDL;
8285 PRINT #2, T$:
8287 PRINT #2, USING "####.####"; G2FLX
8290 * LPRINT "Set Wtd Ave Flux ="; FLUX; " ";
8291 ' LPRINT X; "aigma N(0,1) FAP ="; WFAP#
8292 ' LPRINT "Error in Mean Flux ="; EFLX; " "; PFLX; "%"
8293 ' LPRINT "3.1-aigma MDL Flux ="; WMDL;
8294 ' LPRINT TAB(40); " 4.66~sigma MDL Flux ="; wMDL * 4.66 / 3.1
8295 ' LPRINT
8340 X = FLUX / G2FLX
8341 GOSUB 7000 'Calculate FAP based on N(0,1) with 2F-ERR
8342 GW2FAP# = Q兼
```

```
8345 gW2MDL = 3.092 * GZFLX
8350 PRINT #2, "FAP using Wtd 0-Flux error "; T$; T$; T$;
8371 PRINT #2, USING "#.##########'; GW2FAP#;
8372 PRINT #2, T$;
8375 PRINT #2, USING "##.####"; GW2MDL
9300 AVEFLX = GSF1# / GNM
9310 GNMX = GNM - 1
9320 S# = (GSF2# - GSF1# * GSF1# / GNM) / GNMX
9321 SEFLUX = S#
9325 IF SEFLUX > O THEN SEFLUX = SQR(SEFLUX)
9330 SEAVEF = SEFLUX / SQR(GNM)
9340 PEAVEF = ABS{100 * SEAVEF / AVEFLX)
9350 PRINT #2, "Normal Average"; T$; T$; T$;
9351 PRINT #2, USING "####.####"; AVEFLX;
9352 PRINT #2, T$;
9353 PRINT #2, USING "####*####"; SEAVEF;
9354 PRINT #2, T$;
9355 PRINT #2, USING "#####"; PEAVEF;
9356 PRINT #2, "$"; T$;
9360 X = AVEFLX / SEAVEF
9361 GOSUB 7000 'Calculate FAP based on N(0,1)
9362 SAFAP# = Q#
9365 SAMDL = 3.092 * SEAVEF
9370 PRINT #2, USING "#.#########"; SAFAP#;
9371 PRINT #2, T$;
9375 PRINT #2, USING "##.####"; SAMDL
9380 ' LPRINT "Mean Flux =*; AVEFLX; TAB(40);
9381 * LPRINT X; "sigma N(0,1) FAP ="; SAFAP"
9385 ' LPRINT "Std Dev in Plux ="; SEFLUX
9386 ' LPRINT "Std Error in mean ="; SEAVEF; TAB(40); PEAVEF; "X"
9388 , LPRINT "3.1-sigma MDL Flux ="; SAMDL;
9389 ' LPRINT TAB(40); " 4.66-sigma MDL Flux ="; SAMDL * 4.66 / 3.1
9390 ' LPRINT
9396 ' LPRINT "**************************************"'
9399 ' LPRINT
\begin{tabular}{ll}
9400 GNM \(=0\) & 'Setup for next time through \\
9410 GSFLX \(=0\) & 'Weighted Sum of FLXs \\
9420 GSNTS \(=0\) & 'Sum of WTs \\
9450 GSF1\# \(=0\) & 'Sum of FLXs \\
9460 GSF2\# \(=0\) & 'Sum of (FLX*FLX)s \\
9580 PRINT \#2, &
\end{tabular}
"
-"
9490 RETURN
```


## DISTRIBUTION

No. of
Copies
OFFSITE
10 DOE/Office of Scientific and Technical Information

10 John Schork GPU Nuclear Corp.
P.0. Box 480, Rt. 441 S. Middletown, PA 17057-0191

Michelle Dayis
EG\&G
P.O. Box 1625

Idaho Falls, ID 83401
Steve Metzger
EG\&G TMI Technical Integration P.O. Box 88

Middletown, PA 17057

No. of
Copies

## OMSITE

DOE Richland Operations Office
E. C. Norman

17 Pacific Northwest Laboratory
K. H. Abel (5)
B. D. Geelhood (5)
R. L. Brodzinski

Publishing Coordination
Technical Report Files (5)


[^0]:    (a) Operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830.

[^1]:    (a) C.M Lederer and V. Shirley. 1978. Table of Isotopes, 7th Edition. John Wiley \& Sons, Inc, New York.

[^2]:    (a) S. F. Mughabhab, M. Divadeenam, and N. E. Holden. 1981. Neutron Cross Sections Volume 1 Neutron Resonance Parapeters and Thermal Cross Sections Part A $2=1-60$, Academic Press, New York.

[^3]:    (a)M. Abramowitz and I. Stegun. 1965. Handbook of Mathematical Functions. Dover, Kew York. eqns 26.2.1 and 26.2.17.

[^4]:    (a) B. R. Brosey. January 1988. GPU Nuclear Planning Study, Reactor Vessel Post Defueling Special Nuclear Materials Survey. Tpo/TMI 189, Table 1 page 21.

[^5]:    (a) R. Lancaster and P. Babel. April 8, 1988. TMI-2 Engineering Calculation 4550-3233-3223-88-011.

